European beaver (Castor fiber), the largest rodent species inhabiting a wide area of Eurasia, feeds mainly on dry parts of plants, bark or wood. Such kind of nourishment needs to be properly digested in each part of the gastrointestinal tract. The time of stomach digestion, which directly influences all the following steps of the digestion process, is precisely controlled by the pylorus and its innervation. However, virtually no data is available on the organization of the enteric nervous system in most of the wild animal species, including beavers. On the other hand, a pecu- liar diet consumed by beavers, suggests that the arrangement of their stomach intramural nerve elements can be atypical. Therefore, the present study investigated the distribution and chemical coding of neurons and nerve fibers in the pylorus of the European beaver. The experiment was performed on stomachs obtained from a group of 6 beavers caught in Northeastern region of Poland (due to beaver overpopulation). Pyloric wall tissue cryosections were double immunostained with a mixture of antibodies against pan-neuronal marker PGP 9.5 (to visualize enteric neurons) and ChAT (cholinergic marker), nNOS (nitrergic marker), SP, CGRP, Gal (peptidergic markers). Confocal microscopy analysis revealed that the majority of enteric nerve cells were clustered forming submucosal and myenteric ganglia and all the studied substances were expressed (in various amounts) in these neurons. We conclude, that the anatomical arrangement and chemical coding of intramural nerve elements in the beaver pylorus resemble those found in other mammalian species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.24425/pjvs.2019.127076 | DOI Listing |
Sci Rep
January 2025
Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Bile acids (BAs) play important roles in the context of lipid homeostasis and inflammation. Based on extensive preclinical mouse studies, BA signaling pathways have been implicated as therapeutic targets for cardiovascular diseases. However, differences in BA metabolism between mice and humans hamper translation of preclinical outcomes.
View Article and Find Full Text PDFNat Commun
January 2025
Interfakultäres Institut für Biochemie, University of Tübingen, Tübingen, Germany.
A balanced activity of cGMP signaling contributes to the maintenance of cardiovascular homeostasis. Vascular smooth muscle cells (VSMCs) can generate cGMP via three ligand-activated guanylyl cyclases, the NO-sensitive guanylyl cyclase, the atrial natriuretic peptide (ANP)-activated GC-A, and the C-type natriuretic peptide (CNP)-stimulated GC-B. Here, we study natriuretic peptide signaling in murine VSMCs and atherosclerotic lesions.
View Article and Find Full Text PDFBone Res
January 2025
Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
Osteocytes are the main cells in mineralized bone tissue. Elevated osteocyte apoptosis has been observed in lytic bone lesions of patients with multiple myeloma. However, their precise contribution to bone metastasis remains unclear.
View Article and Find Full Text PDFPart Fibre Toxicol
January 2025
State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical School, Soochow University, Suzhou, Jiangsu, 215123, China.
Background: The advancement of nanotechnology underscores the imperative need for establishing in silico predictive models to assess safety, particularly in the context of chronic respiratory afflictions such as lung fibrosis, a pathogenic transformation that is irreversible. While the compilation of predictive descriptors is pivotal for in silico model development, key features specifically tailored for predicting lung fibrosis remain elusive. This study aimed to uncover the essential predictive descriptors governing nanoparticle-induced pulmonary fibrosis.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Pharmacy The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
Glioblastoma multiforme (GBM) is characterized by pronounced immune escape and resistance to chemotherapy-induced apoptosis. Preliminary investigations revealed a marked overexpression of gasdermin E (GSDME) in GBM. Notably, cisplatin (CDDP) demonstrated a capacity of inducing pyroptosis by activating caspase-3 to cleave GSDME, coupled with the release of proinflammatory factors, indicating the potential as a viable approach of inducing anti-tumor immune activation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!