We present simulations of quantum transport in graphene junctions (Js) in which moiré superlattice potentials are incorporated to demonstrate the interplay between Js and moiré superlattice potentials. It is shown that the longitudinal and Hall resistivity maps can be strongly modulated by the J profile, junction height, and moiré potentials. Device resistance measurements are subsequently performed on graphene/hexagonal- boron-nitride heterostructure samples with accurate alignment of crystallographic orientations to complement and support the simulation results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6463535 | PMC |
http://dx.doi.org/10.1103/PhysRevB.98.045412 | DOI Listing |
Small
January 2025
State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China.
Ultraviolet light detection is essential for environmental monitoring, hazard alerting, and optical communication. Here, a vertical UV photodetector is proposed and demonstrated by stacking the freestanding GaN-film on the 2D GaSe flake. Benefits from the vertical heterostructure and built-in electric field, the photodetector exhibits excellent photoresponse properties, including a high responsivity of 1.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Lab of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510275, China.
Optical responses of twisted bilayer graphene at targeted wavelengths can be amplified by leveraging energy levels of van Hove singularities (VHS) via tuning periods of moiré superlattices. Therefore, precise control of twist angles as well as the moiré superlattices is necessary for fabricating integrated optoelectronic devices such as photodetectors and emitters. Although recent advances in twist angle control help the observation of correlated states in twisted magic-angle graphene structures, the impact of such precise control on enhanced optical absorption is still under investigation.
View Article and Find Full Text PDFNano Lett
January 2025
National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, Jiangsu, China.
Strain solitons have been widely observed in van der Waals materials and their heterostructures. They can manifest as one-dimensional (1D) wires and quasi-two-dimensional (2D) networks. However, their coexistence within the same region has rarely been observed, and their interplay remains unexplored.
View Article and Find Full Text PDFNanoscale
January 2025
Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China.
Superlattices are significant means to reduce the lattice thermal conductivity of thermoelectric materials and optimize their performance. In this work, using high-precision first-principles based neural network potentials combined with non-equilibrium molecular dynamics simulations and the phonon Boltzmann transport equation, the lattice thermal conductivities of BiTe monolayer and lateral BiTe/SbTe monolayer superlattices are thoroughly investigated. As the period length increases, the thermal conductivity shows a trend of an initial decrease followed by an increase, which aligns with conventional observations.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, PR China.
Zn-MnO batteries with two-electron transfer harvest high energy density, high working voltage, inherent safety, and cost-effectiveness. Zn as the dominant charge carriers suffer from sluggish kinetics due to the strong Zn-MnO coulombic interaction, which is also the origin of pestilent MnO lattice deformation and performance degradation. Current studies particularly involve H insertion-dominating chemistry, where the long-term cycle stability remains challenging due to the accumulative Zn insertion and structural collapse.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!