Objectives: The gene encoding glucose transporter 3 (GLUT3, ) is present in the human population at variable copy number. An overt disease phenotype of copy number variants has not been reported; however, deletion of has been previously reported to protect carriers from rheumatoid arthritis, implicating GLUT3 as a therapeutic target in rheumatoid arthritis. Here we aim to perform functional analysis of GLUT3 copy number variants in immune cells, and test the reported protective association of the GLUT3 copy number variants for rheumatoid arthritis in a genetic replication study.
Methods: Cells from genotyped healthy controls were analyzed for /GLUT3 expression and glycolysis capacity. We genotyped the copy number variant in four independent cohorts of rheumatoid arthritis and controls and one cohort of multiple sclerosis and controls.
Results: Heterozygous deletion of correlates directly with expression levels of GLUT3 and influences glycolysis rates in the human immune system. The frequency of the copy number variant is not different between rheumatoid arthritis, multiple sclerosis and control groups.
Conclusions: Despite a robust gene copy number dependent phenotype, our study of large groups of rheumatoid arthritis cases and controls provides no evidence for rheumatoid arthritis disease protection in deletion carriers. These data emphasize the importance of well powered replication studies to confirm or refute genetic associations, particularly for relatively rare variants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6453668 | PMC |
http://dx.doi.org/10.1016/j.ymgmr.2019.100470 | DOI Listing |
Front Oncol
December 2024
Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.
Introduction: Meningiomas are the most common primary central nervous system (CNS) tumor in adults, comprising one-third of all primary adult CNS tumors. Although several recent publications have identified molecular alterations in meningioma including characteristic mutations, copy number alterations, and gene expression signatures, our understanding of the drivers of meningioma recurrence is limited.
Objective: To identify gene expression signatures of 1p22qNF2 meningioma recurrence, with concurrent biallelic inactivation of and loss of chr1p that are heterogenous but enriched for recurrent meningiomas.
BMC Genomics
December 2024
Department of Entomology, University of Maryland, College Park, MD, 20742, USA.
Strong and shifting selective pressures of the Anthropocene are rapidly shaping phenomes and genomes of organisms worldwide. Crops expressing pesticidal proteins from Bacillus thuringiensis (Bt) represent one major selective force on insect genomes. Here we characterize a rapid response to selection by Bt crops in a major crop pest, Helicoverpa zea.
View Article and Find Full Text PDFJ Thorac Oncol
December 2024
Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA; Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
Introduction: Copy-number (CN) loss of chromosome 9p, or parts thereof, impair immune response and confer ICT resistance by direct elimination of immune-regulatory genes on this arm, notably IFNγ genes at 9p24.1, and type-I interferon (IFN-I) genes at 9p21.3.
View Article and Find Full Text PDFJ Invest Dermatol
December 2024
Department of Dermatology, Cleveland Clinic, Cleveland, OH, USA; Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD, USA. Electronic address:
Cancer Metastasis Rev
December 2024
Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, 630090, Russia.
Homologous recombination deficiency (HRD) is considered a universal and effective sign of a tumor's sensitivity to poly(ADP-ribose) polymerase (PARP) inhibitors. HRD diagnostics have undergone several stages of transformations: from detection of point mutations in HR-related genes and large regions with loss of heterozygosity detected using single-nucleotide polymorphism arrays to whole-genome signatures of single-nucleotide variants, large genomic rearrangements (LGRs), and copy number alterations. All these methods have their own advantages and limitations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!