The current gold standard for assessment of most sleep disorders is the in-laboratory polysomnography (PSG). This approach produces high costs and inconveniences for the patients. An accessible and simple preliminary screening method to diagnose the most common sleep disorders and to decide whether a PSG is necessary or not is therefore desirable. A minimalistic type-4 monitoring system which utilized tracheal body sound and actigraphy to accurately diagnose the obstructive sleep apnea syndrome was previously developed. To further improve the diagnostic ability of said system, this study aims to examine if it is possible to perform automated sleep staging utilizing body sound to extract cardiorespiratory features and actigraphy to extract movement features. A linear discriminant classifier based on those features was used for automated sleep staging using the type-4 sleep monitor. For validation 53 subjects underwent a full-night screening at Ulm University Hospital using the developed sleep monitor in addition to polysomnography. To assess sleep stages from PSG, a trained technician manually evaluated EEG, EOG, and EMG recordings. The classifier reached 86.9% accuracy and a Kappa of 0.69 for sleep/wake classification, 76.3% accuracy and a Kappa of 0.42 for Wake/REM/NREM classification, and 56.5% accuracy and a Kappa of 0.36 for Wake/REM/light sleep/deep sleep classification. For the calculation of sleep efficiency (SE), a coefficient of determination r of 0.78 is reached. Additionally, subjects were classified into groups of SEs (SE≥40%, SE≥60% and SE≥80%). A Cohen's Kappa >0.61 was reached for all groups, which is considered as substantial agreement. The presented method provides satisfactory performance in sleep/wake and wake/REM/NREM sleep staging while maintaining a simple setup and offering high comfort. This minimalistic approach may address the need for a simple yet reliable preliminary sleep screening in an ambulatory setting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6449867PMC
http://dx.doi.org/10.3205/000268DOI Listing

Publication Analysis

Top Keywords

automated sleep
12
body sound
12
sleep
12
sleep staging
12
accuracy kappa
12
tracheal body
8
sound actigraphy
8
sleep disorders
8
sleep monitor
8
sleep stage
4

Similar Publications

A multicenter study of neurofibromatosis type 1 utilizing deep learning for whole body tumor identification.

NPJ Digit Med

January 2025

Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.

Deep-learning models have shown promise in differentiating between benign and malignant lesions. Previous studies have primarily focused on specific anatomical regions, overlooking tumors occurring throughout the body with highly heterogeneous whole-body backgrounds. Using neurofibromatosis type 1 (NF1) as an example, this study developed highly accurate MRI-based deep-learning models for the early automated screening of malignant peripheral nerve sheath tumors (MPNSTs) against complex whole-body background.

View Article and Find Full Text PDF

Background: Systemic sclerosis (SSc) is a rare connective tissue disease associated with rapidly evolving interstitial lung disease (ILD), driving its mortality. Specific imaging-based biomarkers associated with the evolution of lung disease are needed to help predict and quantify ILD.

Methods: We evaluated the potential of an automated ILD quantification system (icolung) from chest CT scans, to help in quantification and prediction of ILD progression in SSc-ILD.

View Article and Find Full Text PDF

We explore an innovative approach to sleep stage analysis by incorporating complexity features into sleep scoring methods for mice. Traditional sleep scoring relies on the power spectral features of electroencephalogram (EEG) and the electromyogram (EMG) amplitude. We introduced a novel methodology for sleep stage classification based on two types of complexity analysis, namely multiscale entropy and detrended fluctuation analysis.

View Article and Find Full Text PDF

A Data-driven Approach to Selecting Pulmonary and Critical Care Fellows for Interviews.

ATS Sch

January 2025

Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University Department of Medicine, Emory School of Medicine, Atlanta, Georgia.

Training programs around the country receive many applications every year with a limited time window to send out invitations for interviews. This poses major barriers to conducting holistic application reviews. To create and implement a data-driven selection process that promotes holistic reviews within a tight timeline to select applicants for invitation to interview.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!