Topological lattice using multi-frequency radiation.

New J Phys

Institute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio 3, LT-10222 Vilnius, Lithuania.

Published: January 2018

We describe anoveltechniqueforcreatinganartificialmagneticfieldforultracoldatomsusinga periodicallypulsedpairofcounterpropagatingRamanlasersthatdrivetransitionsbetween a pair of internal atomic spin states: a multi-frequency coupling term. In conjunction with a magnetic field gradient, this dynamically generates a rectangular lattice with a non-staggered magnetic flux. For a wide range of parameters, the resulting Bloch bands have non-trivial topology, reminiscent of Landau levels, as quantified by their Chern numbers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6463519PMC
http://dx.doi.org/10.1088/1367-2630/aab7a3DOI Listing

Publication Analysis

Top Keywords

topological lattice
4
lattice multi-frequency
4
multi-frequency radiation
4
radiation describe
4
describe anoveltechniqueforcreatinganartificialmagneticfieldforultracoldatomsusinga
4
anoveltechniqueforcreatinganartificialmagneticfieldforultracoldatomsusinga periodicallypulsedpairofcounterpropagatingramanlasersthatdrivetransitionsbetween
4
periodicallypulsedpairofcounterpropagatingramanlasersthatdrivetransitionsbetween pair
4
pair internal
4
internal atomic
4
atomic spin
4

Similar Publications

The Lieb lattice is one of the simplest lattices that exhibits both linear Dirac-like and flat topological electronic bands. We propose to further tailor its electronic properties through periodic 1D electrostatic superlattices (SLs), which, in the long wavelength limit, were predicted to give rise to novel transport signatures, such as the omnidirectional super-Klein tunnelling (SKT). By numerically modelling the electronic structure at tight-binding level, we uncover the evolution of the Lieb SL band structure from the discrete all the way to the continuum regime and build a comprehensive picture of the Lieb lattice under 1D potentials.

View Article and Find Full Text PDF

Exact Quantization of Topological Order Parameter in SU(N) Spin Models, N-ality Transformation and Ingappabilities.

Phys Rev Lett

December 2024

RIKEN, Condensed Matter Theory Laboratory, CPR, Wako, Saitama 351-0198, Japan.

We show that the ground-state expectation value of twisting operator is a topological order parameter for U(1)- and Z_{N}-symmetric symmetry-protected topological (SPT) phases in one-dimensional "spin" systems-it is quantized in the thermodynamic limit and can be used to identify different SPT phases and to diagnose phase transitions among them. We prove that this (nonlocal) order parameter must take values in Nth roots of unity, and its value can be changed by a generalized lattice translation acting as an N-ality transformation connecting distinct phases. This result also implies the Lieb-Schultz-Mattis (LSM) ingappability for SU(N) spins if we further impose a general translation symmetry.

View Article and Find Full Text PDF

The emergence of a quantum spin liquid (QSL), a state of matter that can result when electron spins are highly correlated but do not become ordered, has been the subject of a considerable body of research in condensed matter physics [1,2]. Spin liquid states have been proposed as hosts for high-temperature superconductivity [3] and can host topological properties with potential applications in quantum information science [4]. The excitations of most quantum spin liquids are not conventional spin waves but rather quasiparticles known as spinons, whose existence is well established experimentally only in one-dimensional systems; the unambiguous experimental realization of QSL behavior in higher dimensions remains challenging.

View Article and Find Full Text PDF

Topological Moiré Polaritons.

Phys Rev Lett

December 2024

Clermont INP, Institut Pascal, PHOTON-N2, Université Clermont Auvergne, CNRS, F-63000 Clermont-Ferrand, France.

The combination of an in-plane honeycomb potential and of a photonic spin-orbit coupling (SOC) emulates a photonic or polaritonic analog of bilayer graphene. We show that modulating the SOC magnitude allows us to change the overall lattice periodicity, emulating any type of moiré-arranged bilayer graphene with unique all-optical access to the moiré band topology. We show that breaking the time-reversal symmetry by an effective exciton-polariton Zeeman splitting opens a large topological gap in the array of moiré flat bands.

View Article and Find Full Text PDF

By utilizing the time inversion of radiation from spatial dipole arrays, we propose a method for constructing the spatial lattice-type skyrmion arrays under 4 focusing conditions, including Néel-, Bloch-, and Anti-skyrmions/merons. The Richards-Wolf vector diffraction theory is applied to analyze the radiation field emitted by dipole arrays, aiming to determine the incident field required under a high numerical aperture (NA=0.95).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!