Tillage intensive cropping practices have deteriorated soil physical quality and decreased soil organic carbon (SOC) levels in rice-growing areas of South Asia. Consequently, crop productivity has declined over the years demonstrating the need for sustainable alternatives. Given that, a field experiment was conducted for six years to assess the impact of four tillage based crop establishment treatments [puddled transplant rice followed by conventional tillage in wheat/maize (CTTPR-CT), non-puddled transplant rice followed by zero-tillage in wheat/maize (NPTPR-ZT), zero-till transplant rice followed by zero-tillage in wheat/maize (ZTTPR-ZT), zero-tillage direct seeded rice followed by zero-tillage in wheat/maize (ZTDSR-ZT)], two residue management treatments [residue removal, residue retention (~33%)], and two cropping systems [rice-wheat, rice-maize] on soil aggregation, carbon pools, nutrient availability, and crop productivity. After six years of rotation, in top 0.2 m soil depth, zero-till crop establishment treatments (ZTTPR-ZT and ZTDSR-ZT) had higher ( < 0.05) total organic carbon (TOC) over conventional tillage treatment (CTTPR-CT). Zero-till crop establishment treatments increased very-labile C faction (C ) by 21% followed by labile fraction (C ) (16%), non-labile fraction (C ) (13%) and less-labile fraction (C ) (7%). Notably, higher passive C-pool in conservation tillage practices over CTTPR-CT suggests that conservation tillage could stabilize the recalcitrant form of carbon that persists longer in the soil. Meantime, zero-till crop establishment treatments had higher ( < 0.05) water stable macro-aggregates, macro-aggregates: micro-aggregates ratio and aggregate carbon content over CTTPR-CT. The treatment NPTPR-ZT significantly increased soil quality parameters over CTTPR-CT. However, the effect was not as prominent as that of ZTTPR-ZT and ZTDSR-ZT. Retention of crop residue increased ( < 0.05) TOC (12%) and soil available nutrients mainly available-P (16%), followed by available-K (12%), DTPA-extractable Zn (11%), and available-S (6%) over residue removal treatment. The constructive changes in soil properties following conservation tillage and crop residue retention led to increased crop productivity over conventional CTTPR-CT. Therefore, conservation tillage (particularly ZTTPR-ZT and ZTDSR-ZT) and crop residue retention could be recommended in tropical rice-based cropping systems for improving soil quality and production sustainability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6358044 | PMC |
http://dx.doi.org/10.1016/j.geoderma.2019.01.001 | DOI Listing |
iScience
December 2024
Institute of Environment and Sustainable Development (IESD), Banaras Hindu University, Varanasi, UP, India.
Arsenic (As) is a non-essential carcinogenic metalloid and an issue of concern for rice crops. This study investigated the effects of sulfur-loaded tea waste biochar (TWB) due to modification with sodium sulfide (SSTWB) or thiourea (TUTWB) on As stress and accumulation in rice plants. The results showed that sulfur-modified TWB improved plant morphology compared to plants grown in As-contaminated soil alone.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Punjab Agricultural University, Punjab, Ludhiana, 141004, India.
Background: Anaerobic germination is a critical trait for rice cultivation, particularly in regions that experience flooding or waterlogging immediately after sowing. Under direct-seeded conditions, where rice is sown directly into the field without prior transplantation, the ability of seeds to germinate in anaerobic (oxygen-deficient) conditions becomes essential for successful crop establishment. This trait is especially relevant in areas prone to waterlogging, were traditional methods of rice cultivation, such as puddled transplanting, may be less viable.
View Article and Find Full Text PDFACS Biomater Sci Eng
December 2024
Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States.
Transplantable engineered organs could one day be used to treat patients suffering from end-stage organ failure. Yet, producing hierarchical vascular networks that sustain the viability and function of cells within human-scale organs remains a major challenge. Sacrificial templating has emerged as a promising biofabrication method that could overcome this challenge.
View Article and Find Full Text PDFiScience
December 2024
Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute / State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China.
Lower efficiency of agricultural inputs in the four conventional rice planting methods limits productivity and environmental benefits in Southwest China. Thus, we developed a machine-learning-based decision-making system for achieving optimal comprehensive benefits during rice production. Based on conventional benefits for achieving optimal benefits, implemented strategies in these planting methods: reducing N fertilizer by 16% while increasing seed inputs by 9% in mechanical transplanting (MT) method improved yield and environmental benefits; reducing N fertilizer and seed inputs by 10-12% in mechanical direct seeding (MD) method decreased environmental impacts; increasing N-K fertilizers and seed inputs by 15-33% in manual transplanting (MAT) method improved its comprehensive benefits by 7-14%; applying N-P-K fertilizer ratio of 2:1:2 in manual direct seeding (MAD) method enhanced yield.
View Article and Find Full Text PDFJ Exp Med
February 2025
St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
Autosomal recessive deficiency of the IFNAR1 or IFNAR2 chain of the human type I IFN receptor abolishes cellular responses to IFN-α, -β, and -ω, underlies severe viral diseases, and is globally very rare, except for IFNAR1 and IFNAR2 deficiency in Western Polynesia and the Arctic, respectively. We report 11 human IFNAR1 alleles, the products of which impair but do not abolish responses to IFN-α and -ω without affecting responses to IFN-β. Ten of these alleles are rare in all populations studied, but the remaining allele (P335del) is common in Southern China (minor allele frequency ≈2%).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!