Objective: To study whether the pulsed electromagnetic fields (PEMF) promoting rat osteoblasts differentiation and maturation is related to the primary cilia and PI3K/AKT pathway, and to explore the mechanism of PEMF in promoting bone differentiation.
Methods: Enzyme solution was used to obtain newborn SD rats calvarial osteoblasts (ROB), which were processed by 50 Hz 0.6 mT PEMF for 0, 0.5, 1, 1.5 and 2 h, detecting PI3K and AKT protein expression and changes in primary cilia length and incidence; with LY294002 blocking PI3K/AKT signaling pathways we observed whether PEMF promoted osteogenic differentiation of ROB was affected; by interfering IFT88 gene expression by RNAi to inhibit primary cilia we observed whether PI3K/AKT signaling pathway and osteogenic differentiation of ROB was affected. Osteogenic differentiation indexes included alkaline phosphatase (ALP) activity, Real-time PCR and Western blot detection of osteogenic related genes of BMP-2, COL-1 and OSX and calcified nodules number, etc..
Results: After exposure to PEMF for 0, 0.5, 1, 1.5, and 2 h, the protein expression of PI3K and AKT in ROB were increased significantly (P<0.01) and the primary cilia became longer; and the protein expression of PI3K reached the highest level at 0.5 h, as the treatment time of PEMF increased, the PI3K protein expression decreased. AKT showed higher protein expression at 0.5 h and 1.5 h. After blocking the PI3K/AKT signaling pathway with the PI3K blocker LY294002, PEMF could no longer increase ALP activity and the gene expressions of BMP-2, COL-1, OSX which were osteogenically related. However, PEMF could increase the ALP activity and the osteogenically related gene expression in ROB before blocking. After RNAi interfered the primary cilia, PEMF could no longer increase the protein expression of PI3K, which indicated that PEMF could not activate the PI3K/AKT signaling pathway after primary cilia interfering; secondly, the effect of PEMF on enhancing ALP activity disappeared, it also decrease the gene expressions of BMP-2, COL-1, and OSX, and the ability of increasing the calcification nodule formation also disappeared, indicating that the ability of PEMF to promote osteoblast maturation and mineralization disappeared after primary cilia interference.
Conclusion: PEMF activated the PI3K/AKT signaling pathway through primary cilia on the surface of osteoblasts, then promoted bone formation activity and differentiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7441206 | PMC |
http://dx.doi.org/10.19723/j.issn.1671-167X.2019.02.008 | DOI Listing |
In Vivo
December 2024
Department of Veterinary Medicine, Yanbian University, Yanji, P.R. China;
Background/aim: This study aimed to investigate the safety and efficacy of deferoxamine (DFO) pretreated feline adipose tissue derived mesenchymal stem cells (fATMSCs) for the treatment of inflammatory disorders.
Materials And Methods: fATMSCs were isolated from feline adipose tissue and characterized using flow cytometry for surface marker expression and differentiation assays for adipogenic, osteogenic, and chondrogenic lineages. Different concentrations of DFO were used to evaluate its impact on fATMSC activity.
J Control Release
December 2024
Department of Traumatology and Orthopaedic Surgery, Huizhou Central People's Hospital, Huizhou 516001, China; Hui Zhou-Hong Kong Bone Health Joint Research Center, Institute of Orthopaedics, Huizhou Central People's Hospital, Huizhou 516001, China. Electronic address:
Bacterial infections evoke considerable apprehension in orthopedics. Traditional antibiotic treatments exhibit cytotoxic effects and foster bacterial resistance, thereby presenting an ongoing and formidable obstacle in the realm of therapeutic interventions. Achieving bacterial eradication and osteogenesis are critical requirements for bone infection treatment.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Department of Joint Bone Disease Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China. Electronic address:
Background: Ankylosing spondylitis (AS) is an autoimmune disease characterized by dysfunction of the immune system, which leads to chronic inflammation and progressive ossification of spinal ligaments. The precise pathogenesis of this condition remains unclear, thereby impeding the development of effective treatments.
Methods: We analyzed the GSE25101 dataset and identified the aberrant expression and potential pathogenic role of TXN.
Biomed Mater
December 2024
Department of Paper Technology, Indian Institute of Technology Roorkee, Department of Paper Technology, IIT Roorkee, Saharanpur, 247001, INDIA.
The advancement in the arena of bone tissue engineering persuades us to develop novel nanocomposite scaffolds in order to improve antibacterial, osteogenic, and angiogenic properties that show resemblance to natural bone extracellular matrix. Here, we focused on the development of novel zinc-doped hydroxyapatite (ZnHAP) nanoparticles (1, 2 and 3 wt%; size: 50-60 nm) incorporated chitosan-gelatin nanocomposite scaffold, with an interconnected porous structure. The addition of ZnHAP nanoparticles decreases the pore size (~30 µm) of the chitosan gelatin scaffold.
View Article and Find Full Text PDFJ Orthop Res
December 2024
Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
This study investigates the therapeutic potential of Msx1-overexpressing bone marrow mesenchymal stem cells (BMSCs) in enhancing tendon-bone healing in rotator cuff injuries. BMSCs were genetically modified to overexpress Msx1 and were evaluated in vitro for their proliferation, migration, and differentiation potential. Results demonstrated that Msx1 overexpression significantly increased BMSC proliferation and migration while inhibiting osteogenic and chondrogenic differentiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!