Many freshwater environments experience dramatic seasonal changes with some systems remaining ice-covered for most of the winter. Freshwater systems are also highly sensitive to environmental change. However, little is known about changes in microbial abundance and community composition during lake ice formation and times of persistent ice cover. The goal of this study is to characterize temporal dynamics of microbial communities during ice formation and persistent ice cover. Samples were collected in triplicate, five days per week from surface water in the Keweenaw Waterway between November and April. Environmental conditions along with microbial abundance and microbial community composition was determined. Distinct community composition was found between ice-free and ice-covered time periods with significantly different community composition between months. The microbial community underwent dramatic shifts in microbial abundance and diversity during the transitions into and out of ice cover. The richness of the microbial community increased during times of ice cover. Relatives of microbes involved in nitrogen cycling bloomed during times of ice cover as sequences related to known nitrifying taxa were significantly enriched during ice cover. These results help to elucidate how microbial abundance and diversity change over drastic seasonal transitions and how ice cover may affect microbial abundance and diversity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6470161 | PMC |
http://dx.doi.org/10.1038/s41598-019-42609-9 | DOI Listing |
Heliyon
December 2024
Groupe de Recherche en Écologie de la MRC Abitibi (GREMA), Institut de Recherche sur les Forêts, Université du Québec en Abitibi-Témiscamingue, 341 Rue Principale N, Amos, QC, J9T 2L8, Canada.
Lake cyanobacteria can overgrow and form blooms, often releasing life-threatening toxins. Harmful algal blooms (HABs) are typically caused by excess nutrients and high temperatures, but recent observations of cyanobacteria beneath the ice in boreal lakes suggest that the dynamics are more complex. This study investigates the seasonal dynamics of HABs in boreal lakes and identifies their driving factors.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, China.
Exploring the response relationship between civil war, population and land cover change is of great practical significance for social stability in Myanmar. However, the ongoing civil war in Myanmar hinders direct understanding of the situation on the ground, which in turn limits detailed study of the intricate relationship between the dynamics of the civil war and its impact on population and land. Therefore, this paper explores the response relationship between civil war conflict and population and land cover change in Myanmar from 2010 to 2020 from the perspective of remote sensing using the land cover data we produced, the open spatial demographics data, and the armed conflict location and event data project.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Geography, Centre for Northern Studies (CEN), & Takuvik International Research Laboratory, Université Laval, Québec, QC, Canada.
The Arctic is among the most rapidly warming regions on Earth, and climate change has triggered widespread alterations to its cryosphere and ecosystems. Among these, high Arctic lakes are highly sensitive to rising temperatures due to the influence of ice cover on multiple limnological processes. Here, we studied the sediments of three lakes on northern Ellesmere Island (82.
View Article and Find Full Text PDFNature
January 2025
Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, USA.
Understanding the causes of past atmospheric methane (CH) variability is important for characterizing the relationship between CH, global climate and terrestrial biogeochemical cycling. Ice core records of atmospheric CH contain rapid variations linked to abrupt climate changes of the last glacial period known as Dansgaard-Oeschger (DO) events and Heinrich events (HE). The drivers of these CH variations remain unknown but can be constrained with ice core measurements of the stable isotopic composition of atmospheric CH, which is sensitive to the strength of different isotopically distinguishable emission categories (microbial, pyrogenic and geologic).
View Article and Find Full Text PDFPLoS One
December 2024
Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, United States of America.
We explore the habitat use of Antarctic pack-ice seals by analyzing their occupancy patterns on pack-ice floes, employing a novel combination of segmented generalized linear regression and fine-scale (∼ 50 cm pixel resolution) sea ice feature extraction in satellite imagery. Our analysis of environmental factors identified ice floe size, fine-scale sea ice concentration and nearby marine topography as significantly correlated with seal haul out abundance. Further analysis between seal abundance and ice floe size identified pronounced shifts in the relationship between the number of seals hauled out and floe size, with a positive relationship up to approximately 50 m2 that diminishes for larger floe sizes and largely plateaus after 500 m2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!