Aphids are a serious pest for peach crops. They have traditionally been managed with insecticides, but there is increasing concern about the risk that insecticides pose to both humans and the environment. As a first step to use biological control in aphid management, we conducted a 3-year field survey in northeastern Spain to determine which parasitoids and hyperparasitoids were most prevalent on two aphids, (Sulzer) and spp. Koch, the most harmful to peach trees. We collected 11 parasitoid species from with (Haliday) being the most abundant. Two parasitoid species were also collected from spp., Telenga and (Haliday). Hyperparasitoid species overlapped between these aphids but their relative abundances differed. We also discuss the possible impacts of hyperparasitoids on parasitoid populations. Our results suggest that it would be feasible to implement biocontrol methods for aphids in integrated pest management programmes in peach orchards. There are a number of primary parasitoid species associated with these aphids, and the nearby crops and wild vegetation in the vicinity and within the orchards may provide a suitable habitat for them. Additionally, some of them are commercially available and might be usable in augmentative releases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6523163 | PMC |
http://dx.doi.org/10.3390/insects10040109 | DOI Listing |
Pest Manag Sci
December 2024
Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
Background: Intentionally impairing the fecundity of mass-reared insects has important utility in controlling pest species. Typically, sterilized individuals are competed against wild counterparts, reducing pest population size. A novel consideration is creating biocontrol agents with lower reproductive capacity that are less likely to establish permanently or admix with wild populations, which are both emerging as legal barriers.
View Article and Find Full Text PDFCurr Biol
December 2024
Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Essig Museum of Entomology, University of California, Berkeley, Berkeley, CA 94720, USA. Electronic address:
Metazoan parasites have played a major role in shaping innate immunity in animals. Insect hosts and parasitoid wasps are excellent models for illuminating how animal innate immune systems have evolved to neutralize these enemies. One such strategy relies on symbioses between insects and intracellular bacteria that express phage-encoded toxins.
View Article and Find Full Text PDFMath Biosci Eng
November 2024
Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy.
The invasive stink bug has become an important pest of many crops, causing severe economic losses to farmers. Control of the pest mainly relies on multiple applications of broad-spectrum insecticides, undermining the integrated pest management programs and causing secondary pest outbreaks. In the native area, egg parasitoids are the main natural enemies of , among which is considered the predominant species.
View Article and Find Full Text PDFJ Insect Physiol
December 2024
EGCE, Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette 91190, France. Electronic address:
Endoparasitoids possess a whole set of virulence factors to counter the immune response of their host, among which can be found venom, endosymbiotic viruses and ovarian proteins. Depending on the species, some factors are expected to be less necessary than others. Notably, venom is reported as inessential in some parasitoids bearing viruses.
View Article and Find Full Text PDFPestic Biochem Physiol
December 2024
University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic. Electronic address:
The complexities of non-target effects of registered pesticides on biocontrol agents (BCAs) hinder the optimization of integrated pest management programs in agriculture. The wealth of literature on BCA-pesticide compatibility allows for the investigation of factors influencing BCA susceptibility and the generalized impacts of different pesticides. We conducted a meta-analysis using 2088 observations from 122 published articles to assess non-target effects on two phytoseiid species (Neoseiulus californicus and Phytoseiulus persimilis), a parasitoid (Encarsia formosa), and two microbial BCAs (Trichoderma harzianum and Metarhizium anisopliae).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!