Real space chemical analysis of two structurally very similar components, that is, regioisomers lies at the heart of heterogeneous catalysis reactions, modern-age electronic devices, and various other surface related problems in surface science and nanotechnology. One of the big challenges in surface chemistry is to identify different surface adsorbed molecules and analyze their chemical properties individually. Herein, we report a topological and chemical analysis of two regioisomers, trans- and cis-tetrakispentafluorophenylporphodilactone ( trans- and cis-HFTPPDL) molecules by high-resolution scanning tunneling microscopy, and ultrahigh vacuum tip-enhanced Raman spectroscopy (UHV-TERS). Both isomeric structures are investigated individually on Ag(100) at liquid nitrogen temperature. Following that, we have successfully distinguished these two regioisomeric molecules simultaneously through TERS with an angstrom scale (8 Å) spatial resolution. Also, the two-component organic heterojunction has been characterized at large scale using high-resolution two-dimensional mapping. Combined with time-dependent density functional theory simulations, we explain the TERS spectral discrepancies for both isomers in the fingerprint region.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.9b00826DOI Listing

Publication Analysis

Top Keywords

chemical analysis
12
angstrom scale
8
ultrahigh vacuum
8
vacuum tip-enhanced
8
tip-enhanced raman
8
chemical
4
scale chemical
4
analysis metal
4
metal supported
4
supported trans-
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!