To explore the characteristics of rhizosphere soil microorganisms in paddy fields with different manure nitrogen (N) input ratios at different growth stages of early and late rice in double-cropping rice system, a field experiment was conducted with five different treatments: 1) 100% N of chemical fertilizer (M), 2) 30% N of organic matter and 70% N of chemical fertilizer (M), 3) 50% N of organic matter and 50% N of chemical fertilizer (M), 4) 100% N of organic matter (M), and 5) no N fertilizer input as a control (M). The rhizosphere soil microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and microbial quotient (SQ) of the paddy fields were measured using the fumigation-extraction and chemical analysis methods. The results showed that the rhizosphere MBC, MBN, and SQ of the paddy fields at main different growth stages of early and late rice were increased by fertilization, which increased first and then decreased with the development of rice growth period, peaked at the heading stage, and reached the minimum value at the maturity stage. The effects of different fertilization treatments were in order of M>M>M>M>M, with no significant difference among M, M and M, but being significantly higher than M. Therefore, the application of organic matter, and combined application of chemical fertilizer with organic matter could significantly increase the rhizosphere MBC, MBN, and SQ of the paddy fields at early and late rice growth period, while chemical fertilizer alone had little effect.

Download full-text PDF

Source
http://dx.doi.org/10.13287/j.1001-9332.201904.014DOI Listing

Publication Analysis

Top Keywords

chemical fertilizer
20
organic matter
20
paddy fields
16
rhizosphere soil
12
microbial biomass
12
early late
12
late rice
12
manure nitrogen
8
nitrogen input
8
soil microbial
8

Similar Publications

Excessive use of chemical fertilizers and extensive farming can degrade soil properties so that leading to decline in crop yields. Combining plant growth-promoting rhizobacteria (PGPR) with biochar (BC) may be an alternative way to mitigate this situation. However, the proportion of PGPR and BC at which crop yield can be improved, as well as the improvement effect extent on different eco-geographic region and crops, remain unclear.

View Article and Find Full Text PDF

Extracts of medicinal seeds can be used to synthesize nanoparticles (NPs) in more environmentally friendly ways than physical or chemical ways. For the first time, aqueous extract from unexploited grape seeds was used in this study to create Se/ZnO NPS utilizing a green technique, and their antimicrobial activity, cytotoxicity, antioxidant activities, and plant bio stimulant properties of the economic Vicia faba L. plant were evaluated.

View Article and Find Full Text PDF

To ensure the correct euploid state of embryos, it is essential that vertebrate oocytes await fertilization arrested at metaphase of meiosis II. This MII arrest is mediated by XErp1/Emi2, which inhibits the ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome). Cyclin B3 in complex with Cdk1 (cyclin-dependent kinase 1) is essential to prevent an untimely arrest of vertebrate oocytes in meiosis I by targeting XErp1/Emi2 for degradation.

View Article and Find Full Text PDF
Article Synopsis
  • Chickpeas and apricots are economically significant crops that suffer from severe fungal infections, traditionally managed with chemical fungicides that pose health and environmental risks.
  • Myco-synthesized (from fungi) and bacteria-synthesized zinc oxide (ZnO) nanoparticles were compared for their antifungal effectiveness against specific pathogens affecting these crops.
  • Results showed that myco-synthesized ZnO nanoparticles exhibited better antifungal properties at lower concentrations, highlighting the need for further research to enhance their application in agriculture as sustainable alternatives to chemical fungicides.
View Article and Find Full Text PDF

Evaluation of Performance and Stability of a Gel-Type Polymer Sorbent for Recovery of Phosphate from Waste Streams.

ACS Appl Polym Mater

December 2024

School of Chemistry and Chemical Engineering, Queen's University, David Keir Building, Stranmillis Road, BT9 5AG Belfast, Northern Ireland, U.K.

Phosphorus (P) fertilizer is an essential component of our food system with the majority of all mined P rock processed to make mineral fertilizers. Globally however P rock stocks are declining-both in quality and quantity-with poor P management creating a linear economic system where P is mined, globally redistributed into products and eventually discharged into the environment leading to eutrophication. To enable establishment of a circular P economy, whereby P can be recovered from waste for its industrial reuse, requires the development of effective P recovery technologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!