1,4-Bis(trimethylsilyl)-1,4-diaza-2,5-cyclohexadiene, 1, was tested as a reagent for the reductive silylation of various unsaturated functionalities, including N-heterocycles, quinones, and other redox-active moieties in addition to deoxygenation of main group oxides. Whereas most reactions tested are thermodynamically favorable, based on DFT calculations, a few do not occur, perhaps giving limited insight on the mechanism of this very attractive reductive process. Of note, reductive silylation reactions show a strong solvent dependence where a polar solvent facilitates conversions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201900879 | DOI Listing |
Chemistry
January 2025
Centre CEA Paris-Saclay: Commissariat a l'Energie Atomique et aux Energies Alternatives Centre de Saclay, IRAMIS Institute, CEA - Saclay, 91190, Gif-Sur-Yvette, FRANCE.
The Schwartz's reagent Cp2Zr(H)Cl is a well known stoichiometric reagent for the reduction of unsaturated organic molecules but it has rarely been used in catalytic transformations. Herein, we describe the reduction of a variety of organic carbonates using the catalyst Cp2Zr(H)Cl in combination with Me(MeO)2SiH (DMMS) as reductant. This method was further applied to the reductive depolymerization of some polycarbonate materials and yielded silylated alcohols and diols in mild conditions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Sichuan University, West China School of Pharmacy, Renmin Sout Road, 3rd Section, 17#, 610041, Chengdu, CHINA.
Bryostatins are a family of marine natural products that have garnered significant interests, as evidenced by over 40 clinical trials. However, their extremely low natural abundance has severely limited further research. Despite significant efforts, which have led to the total synthesis of seven bryostatin members by eight independent research groups, these complex molecules present persistent challenges for stereocontrolled, large-scale, and especially divergent synthesis.
View Article and Find Full Text PDFOrg Lett
January 2025
Department of Materials Science and Bioengineering, Nagaoka University of Technology, 1603-1, Kamitomioka-cho, NagaokaNiigata 940-2188, Japan.
Reductive direct substitution of α-arylvinyl triflates on the sp carbon atom by magnesium in the presence of chlorosilane proceeded to give the corresponding α-silylstyrenes, which could not be reduced further, and the reaction completely stopped because the reduction potential of α-silylstyrenes lies out of the reducible field of magnesium. The subsequent reduction of α-silylstyrenes by calcium brought about the second introduction of another silyl group to the vicinal carbon atom to lead a selective and simple route to a variety of 1,2-disilanes from vinyl triflates by cooperative works of magnesium and calcium with different reduction potentiality.
View Article and Find Full Text PDFSci Bull (Beijing)
December 2024
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China. Electronic address:
Divergent synthesis of valuable molecules through common starting materials and metal catalysis represents a longstanding challenge and a significant research goal. We here describe chemodivergent, highly enantio- and regioselective nickel-catalyzed reductive and dehydrogenative coupling reactions of alkynes, aldehydes, and silanes. A single chiral Ni-based catalyst is leveraged to directly prepare three distinct enantioenriched products (silyl-protected trisubstituted chiral allylic alcohols, oxasilacyclopentenes, and silicon-stereogenic oxasilacyclopentenes) in a single chemical operation.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar-752050, India.
The reduction of aryl carboxylates to methyl and allyl arene was attained using a well-defined cobalt catalyst. This catalytic transformation employs only a sub-stoichiometric amount of base, and diethylsilane as a reductant. Catalytic activation of the Si-H bond of the silanes, C-O bond of the ester, and silyl ether intermediates by cobalt is crucial to achieving exhaustive reduction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!