Although benzotriazoles are important and ubiquitous, currently there is only one conceptual approach to their synthesis: bridging the two ortho-amino groups with an electrophilic nitrogen atom. Herein, we disclose a new practical alternative - the endo-cyclization of 2-azidoaryl lithiums obtained in situ from 2-azido-aryl bromides. The scope of the reaction is illustrated using twenty-four examples with a variety of alkyl, alkoxy, perfluoroalkyl, and halogen substituents. We found that the directing effect of the azide group allows selective metal-halogen exchange in aryl azides containing several bromine atoms. Furthermore, (2-bromophenyl)diazomethane undergoes similar cyclization to give an indazole. Thus, cyclizations of aryl lithiums containing an ortho-X = Y = Z group emerge as a new general approach for the synthesis of aromatic heterocycles. DFT computations suggested that the observed endo-selectivity applies to the anionic cyclizations of other functionalities that undergo "1,1-additions" (i.e., azides, diazo compounds, and isonitriles). In contrast, cyclizations with the heteroatomic functionalities that follow the "1,2-addition" pattern (cyanates, thiocyanates, isocyanates, isothiocyanates, and nitriles) prefer the exo-cyclization path. Hence, such reactions expand the current understanding of stereoelectronic factors in anionic cyclizations.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9ob00615jDOI Listing

Publication Analysis

Top Keywords

azide group
8
approach synthesis
8
anionic cyclizations
8
making endo-cyclizations
4
endo-cyclizations favorable
4
favorable conceptually
4
conceptually synthetic
4
synthetic approach
4
approach benzotriazoles
4
benzotriazoles azide
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!