The growth of single-crystal III-nitride films with a low stress and dislocation density is crucial for the semiconductor industry. In particular, AlN-derived deep-ultraviolet light-emitting diodes (DUV-LEDs) have important applications in microelectronic technologies and environmental sciences but are still limited by large lattice and thermal mismatches between the epilayer and substrate. Here, the quasi-van der Waals epitaxial (QvdWE) growth of high-quality AlN films on graphene/sapphire substrates is reported and their application in high-performance DUV-LEDs is demonstrated. Guided by density functional theory calculations, it is found that pyrrolic nitrogen in graphene introduced by a plasma treatment greatly facilitates the AlN nucleation and enables fast growth of a mirror-smooth single-crystal film in a very short time of ≈0.5 h (≈50% decrease compared with the conventional process), thus leading to a largely reduced cost. Additionally, graphene effectively releases the biaxial stress (0.11 GPa) and reduces the dislocation density in the epilayer. The as-fabricated DUV-LED shows a low turn-on voltage, good reliability, and high output power. This study may provide a revolutionary technology for the epitaxial growth of AlN films and provide opportunities for scalable applications of graphene films.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201807345 | DOI Listing |
Micromachines (Basel)
December 2024
School of Microelectronics, Northwestern Polytechnical University, Xi'an 710129, China.
Serious electron leakage and poor hole injection efficiency are still challenges for deep ultraviolet AlGaN-based light-emitting diodes with a traditional structure in achieving high performance. Currently, the majority of research works concentrate on optimizing the structures of the electron blocking layer (EBL) and last quantum barrier (LQB) separately, rather than considering them as an integrated structure. Therefore, in this study, an Al-content-varied AlGaN composite last quantum barrier (CLQB) layer is proposed to replace the traditional EBL and LQB layers.
View Article and Find Full Text PDFHere, we systematically investigate the effect of mesa/sub-mesa sidewall engineering on single-junction (SJ) and high-voltage (HV) deep ultraviolet light-emitting diodes (DUV LEDs). The configuration of ∼46° inclined angle of the mesa/sub-mesa sidewall and Al reflector optimally promotes light extraction of SJ/HV DUV LEDs. We further observe substantial improvements in the self-heating and external quantum efficiency (EQE) droop effects of HV DUV LEDs with an increasing number of sub-mesas.
View Article and Find Full Text PDFMolecules
November 2024
Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China.
AlN, with its ultra-wide bandgap, is highly attractive for modern applications in deep ultraviolet light-emitting diodes and electronic devices. In this study, the surface and cross-sectional properties of AlN films grown on flat and nano-patterned sapphire substrates are characterized by a variety of techniques, including photoluminescence spectroscopy, high-resolution X-ray diffraction, X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and Raman spectroscopy. The results indicate that different sapphire substrates have minimal impact on the photoluminescence spectrum of the epitaxial films.
View Article and Find Full Text PDFIn this work, electrical and optical performances for 250 nm AlGaN-based flip-chip deep ultraviolet light emitting diodes (DUV LEDs) with different chip sizes are studied. Reduced chip size helps increase the light extraction efficiency (LEE) with the cost of increased surface nonradiative recombination. Nevertheless, a thin p-AlGaN layer of 10 nm can manage current distribution while suppressing surface recombination and reducing light absorption simultaneously, which results in the increased optical power density.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2024
Southern Polytechnic College of Engineering and Engineering Technology, Kennesaw State University, Marietta, GA 30060, USA.
AlGaN is attractive for fabricating deep ultraviolet (DUV) optoelectronic and electronic devices of light-emitting diodes (LEDs), photodetectors, high-electron-mobility field-effect transistors (HEMTs), etc. We investigated the quality and optical properties of AlGaN films with high Al fractions (60-87%) grown on sapphire substrates, including AlN nucleation and buffer layers, by metal-organic chemical vapor deposition (MOCVD). They were initially investigated by high-resolution X-ray diffraction (HR-XRD) and Raman scattering (RS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!