The fast evolution of surface treatments for biomedical implants and the concern with their contact with cells and microorganisms at early phases of bone healing has boosted the development of surface topographies presenting drug delivery potential for, among other features, bacterial growth inhibition without impairing cell adhesion. A diverse set of metal ions and nanoparticles (NPs) present antibacterial properties of their own, which can be applied to improve the implant local response to contamination. Considering the promising combination of nanostructured surfaces with antibacterial materials, this critical review describes a variety of antibacterial effects attributed to specific metals, ions and their combinations. Also, it explains the TiO nanotubes (TNTs) surface creation, in which the possibility of aggregation of an active drug delivery system is applicable. Also, we discuss the pertinent literature related to the state of the art of drug incorporation of NPs with antibacterial properties inside TNTs, along with the promising future perspectives of in situ drug delivery systems aggregated to biomedical implants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6468021PMC
http://dx.doi.org/10.1186/s13568-019-0777-6DOI Listing

Publication Analysis

Top Keywords

biomedical implants
12
drug delivery
12
tio nanotubes
8
nps antibacterial
8
antibacterial properties
8
antibacterial
5
antibacterial potential
4
potential associated
4
associated drug-delivery
4
drug-delivery built
4

Similar Publications

Genomic imprinting is the parent-of-origin dependent monoallelic expression of genes often associated with regions of germline-derived DNA methylation that are maintained as differentially methylated regions (gDMRs) in somatic tissues. This form of epigenetic regulation is highly conserved in mammals and is thought to have co-evolved with placentation. Tissue-specific gDMRs have been identified in human placenta, suggesting that species-specific imprinting dependent on unorthodox epigenetic establishment or maintenance may be more widespread than previously anticipated.

View Article and Find Full Text PDF

Human epidermal growth factor receptor 2 (HER2, also known as ERBB2) signaling promotes cell growth and differentiation, and is overexpressed in several tumor types, including breast, gastric and colorectal cancer. HER2-targeted therapies have shown clinical activity against these tumor types, resulting in regulatory approvals. However, the efficacy of HER2 therapies in tumors with HER2 mutations has not been widely investigated.

View Article and Find Full Text PDF

Definition and diagnostic criteria of clinical obesity.

Lancet Diabetes Endocrinol

January 2025

Division of Diabetes & Nutritional Sciences, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK; Catholic University of the Sacred Heart, Rome, Italy; University Polyclinic Foundation Agostino Gemelli IRCCS, Rome, Italy.

View Article and Find Full Text PDF

Lack of context modulation in human single neuron responses in the medial temporal lobe.

Cell Rep

January 2025

Centre for Systems Neuroscience, University of Leicester, Leicester, UK; Hospital Del Mar Medical Research Institute (IMIM), Barcelona, Spain; Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain; Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:

In subjects implanted with intracranial electrodes, we use two different stories involving the same person (or place) to evaluate whether and to what extent context modulates human single-neuron responses. Nearly all neurons (97% during encoding and 100% during recall) initially responding to a person/place do not modulate their response with context. Likewise, nearly none (<1%) of the initially non-responsive neurons show conjunctive coding, responding to particular persons/places in a particular context during the tasks.

View Article and Find Full Text PDF

Purpose: Subchondral bone marrow lesions (BMLs) are present in a wide range of pathologies with different prognoses. Thus, a careful diagnosis is mandatory to address them with the proper treatment. The aim of this review was to examine BMLs aetiology and their relationship with biomechanical and biological factors, to identify BMLs and help clinicians to properly recognize and treat each of these common alterations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!