A disintegrin and metalloproteinase 12 (ADAM12) is known to be involved in chondrocyte proliferation and maturation; however, the mechanisms are not fully understood. In this study, expression and localization of ADAM12 during chondrocyte differentiation were examined in the mouse growth plate by immunohistochemistry. Adam12 expression during ATDC5 chondrogenic differentiation was examined by real-time PCR and compared with the expression pattern of type X collagen. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system was used to generate Adam12-knockout (KO) ATDC5 cells. Adam12-KO and Adam12 overexpressing cells were used for analyses of ADAM12 expression with or without TGF-β1 stimulation. ADAM12 was identified predominantly in chondrocytes of the proliferative zone in mouse growth plates by immunohistochemistry. Adam12 was upregulated prior to Col10a1 during chondrogenic differentiation in wild-type ATDC5 cells. In Adam12-KO ATDC5 cells, following initiation of chondrogenic differentiation, we observed a reduction in Igf-1 expression along with an upregulation of hypertrophy-associated Runx2, Col10a1, and type X collagen protein expressions. In ATDC5 wild-type cells, stimulation with TGF-β1 upregulated the expressions of Adam12 and Igf-1 and downregulated the expression of Runx2. In contrast, in Adam12-KO ATDC5 cells, these TGF-β1-induced changes were suppressed. Adam12 overexpression resulted in an upregulation of Igf-1 and downregulation of Runx2 expression in ATDC5 cells. The findings suggest that ADAM12 has important role in the regulation of chondrocyte differentiation, potentially by regulation of TGF-β1-dependent signaling and that targeting of ADAM12 may have a role in management of abnormal chondrocyte differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00223-019-00549-6DOI Listing

Publication Analysis

Top Keywords

atdc5 cells
20
chondrocyte differentiation
16
chondrogenic differentiation
12
adam12
11
adam12 chondrocyte
8
differentiation regulation
8
differentiation examined
8
mouse growth
8
immunohistochemistry adam12
8
adam12 expression
8

Similar Publications

Introduction: FTY720 bioactive lipid has proliferative, osteoinductive, chemo attractive, and angiogenic properties, being thus a potential exogenous administered agent for promotion of bone regeneration. Herein we developed FTY720-loaded liposomes as a potential delivery system that could retain and prolong the bioactivity of the bioactive lipid and at the same time reduce its cytotoxicity (at high doses).

Methods: FTY720 liposomes were prepared by thin-lipid hydration and microfluidic flow focusing, and evaluated for their ability to induce proliferation, osteoinduction, and chemoattraction in three cell types: MC3T3-E1 pre-osteoblast cells, L929 fibroblast cells, and ATDC5 chondrogenic cells.

View Article and Find Full Text PDF

Osteoarthritis, a major global cause of pain and disability, is driven by the irreversible degradation of hyaline cartilage in joints. Cartilage tissue engineering presents a promising therapeutic avenue, but success hinges on replicating the native physiological environment to guide cellular behavior and generate tissue constructs that mimic natural cartilage. Although electrical stimulation has been shown to enhance chondrogenesis and extracellular matrix production in 2D cultures, the mechanisms underlying these effects remain poorly understood, particularly in 3D models.

View Article and Find Full Text PDF

Background: Our previous study demonstrated that temperature-related microwave ablation (MWA) can safely modulate growth plates of piglets' vertebrae. Therefore, this study is designed to investigate the effects of different temperatures on chondrocyte viability and the underlying molecular mechanisms in vitro.

Methods: Following a 10-minute treatment at different temperatures (37 °C, 40 °C, 42 °C, 44 °C, 46 °C, 48 °C, and 50 °C), CCK-8 assay was used to examine the viability of ATDC5 cells at 12 h.

View Article and Find Full Text PDF

A programmable arthritis-specific receptor for guided articular cartilage regenerative medicine.

Osteoarthritis Cartilage

December 2024

Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA; Center for Bone Biology, Vanderbilt University, Nashville, TN 37212, USA; Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37212, USA. Electronic address:

Objective: Investigational cell therapies have been developed as disease-modifying agents for the treatment of osteoarthritis (OA), including those that inducibly respond to inflammatory factors driving OA progression. However, dysregulated inflammatory cascades do not specifically signify the presence of OA. Here, we deploy a synthetic receptor platform that regulates cell behaviors in an arthritis-specific fashion to confine transgene expression to sites of cartilage degeneration.

View Article and Find Full Text PDF

Deficiency of EXT1 and FGFR3 genes promotes chondrocyte differentiation, leading to the induction of osteochondroma formation.

Bone

December 2024

Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming 650106, China; Yunnan Key Laboratory of Stomatology, Kunming 650106, China. Electronic address:

Objective: This study aims to investigate the roles of the EXT1 and FGFR3 genes in the development of osteochondromas, focusing specifically on their potential interactions in chondrocyte proliferation, differentiation, and tumor formation.

Methods: In vitro, the ATDC5 chondroprogenitor cell line was used to examine the effects of inactivation of both EXT1 and FGFR3. In vivo, a mouse model with dual gene knockout of Ext1 and Fgfr3 was constructed to further explore these genes' roles in tumor formation by observing the incidence and distribution patterns of osteochondromas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!