Fungi play an important role in cycling organic matter and nutrients in marine ecosystems. However, the distribution of fungal communities in the ocean, especially the vertical distribution along depth in the water column, remained poorly understood. Here, we assess the depth-related distribution pattern of fungal communities along the water column from epi- to abyssopelagic zones of the Western Pacific Ocean using internal transcribed spacer 2 (ITS2) metabarcoding. Majority of the assigned OTUs were affiliated to Ascomycota, followed by three other minor phyla (Basidiomycota, Chytridiomycota, and Mucoromycota). The epipelagic zone harbored a higher OTU richness with distinct fungal communities as compared with meso-, bathy-, and abyssopelagic zones. Across the whole water column, depth appears as a key parameter for both fungal α- and β-diversity. However, when the dataset was split into the upper (5-500 m) and deeper (below 500 m) layers, no significant correlation was observed between depth and community compositions. In the upper layer, temperature and dissolved oxygen were recognized as the primary environmental factors shaping fungal α- and β- diversity. By parsing fungal OTUs into ecological categories, multi-trophic mode of nutrition was found to be more prevalent with increasing depth, suggesting a potential adaptation to the extreme conditions of the deep sea. This study provides new and meaningful information on the depth-stratified fungal diversity, community structure, and putative ecological roles in the open sea.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00248-019-01374-y | DOI Listing |
Microbiome
April 2024
State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
Background: The deep sea represents the largest marine ecosystem, driving global-scale biogeochemical cycles. Microorganisms are the most abundant biological entities and play a vital role in the cycling of organic matter in such ecosystems. The primary food source for abyssal biota is the sedimentation of particulate organic polymers.
View Article and Find Full Text PDFFront Microbiol
September 2020
College of Marine Life Sciences, Ocean University of China, Qingdao, China.
Despite numerous studies on marine prokaryotes, the vertical distribution patterns of bacterial community, either on the taxonomic composition or the functional structure, remains relatively unexplored. Using HiSeq-derived 16S rRNA data, the depth-related distribution patterns of taxonomic diversity and functional structure predicted from diversity data in the water column and sediments of the Western Pacific Ocean were explored. The OTU richness declined along the water column after peaking between 100 to 200 m deep.
View Article and Find Full Text PDFMicrob Ecol
November 2019
State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
Fungi play an important role in cycling organic matter and nutrients in marine ecosystems. However, the distribution of fungal communities in the ocean, especially the vertical distribution along depth in the water column, remained poorly understood. Here, we assess the depth-related distribution pattern of fungal communities along the water column from epi- to abyssopelagic zones of the Western Pacific Ocean using internal transcribed spacer 2 (ITS2) metabarcoding.
View Article and Find Full Text PDFSci Rep
October 2018
Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
Picoeukaryotes play prominent roles in the biogeochemical cycles in marine ecosystems. However, their molecular diversity studies have been confined in marine surface waters or shallow coastal sediments. Here, we investigated the diversity and metabolic activity of picoeukaryotic communities at depths ranging from the surface to the abyssopelagic zone in the western Pacific Ocean above the north and south slopes of the Mariana Trench.
View Article and Find Full Text PDFFront Microbiol
April 2018
Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.
Particle-attached (PA) and free-living (FL) microorganisms play significant but different roles in mineralization of organic matter (OM) in the ocean. Currently, little is known about PA and FL microbial communities in bathyal and abyssal pelagic waters, and understanding of their diversity and distribution in the water column and their interactions with environmental factors in the trench area is limited. We investigated for the first time the variations of abundance and diversities of the PA and FL bacterial communities in the epi-, bathy-, and abyssopelagic zones of the New Britain Trench (NBT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!