Selective protein enrichment in calcium oxalate stone matrix: a window to pathogenesis?

Urolithiasis

Department of Medicine/Division of Nephrology, Medical College of Wisconsin, 9200 W Wisconsin Avenue, Milwaukee, WI, 53226, USA.

Published: December 2019

Urine proteins are thought to control calcium oxalate stone formation, but over 1000 proteins have been reported in stone matrix obscuring their relative importance. Proteins critical to stone formation should be present at increased relative abundance in stone matrix compared to urine, so quantitative protein distribution data were obtained for stone matrix compared to prior urine proteome data. Matrix proteins were isolated from eight stones (> 90% calcium oxalate content) by crystal dissolution and further purified by ultradiafiltration (> 10 kDa membrane). Proteomic analyses were performed using label-free spectral counting tandem mass spectrometry, followed by stringent filtering. The average matrix proteome was compared to the average urine proteome observed in random urine samples from 25 calcium oxalate stone formers reported previously. Five proteins were prominently enriched in matrix, accounting for a mass fraction of > 30% of matrix protein, but only 3% of urine protein. Many highly abundant urinary proteins, like albumin and uromodulin, were present in matrix at reduced relative abundance compared to urine, likely indicating non-selective inclusion in matrix. Furthermore, grouping proteins by isoelectric point demonstrated that the stone matrix proteome was highly enriched in both strongly anionic (i.e., osteopontin) and strongly cationic (i.e., histone) proteins, most of which are normally found in intracellular or nuclear compartments. The fact that highly anionic and highly cationic proteins aggregate at low concentrations and these aggregates can induce crystal aggregation suggests that protein aggregation may facilitate calcium oxalate stone formation, while cell injury processes are implicated by the presence of many intracellular proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8496971PMC
http://dx.doi.org/10.1007/s00240-019-01131-3DOI Listing

Publication Analysis

Top Keywords

calcium oxalate
20
stone matrix
20
oxalate stone
16
stone formation
12
matrix
11
proteins
10
stone
9
relative abundance
8
matrix compared
8
compared urine
8

Similar Publications

Dienia is a small, pantropical genus of epidendroid Malaxideae orchids. The floral lip is upwardly directed and does not serve as a landing platform for pollinators. This role has been assumed by sepals and/or gynostemium or whole inflorescence.

View Article and Find Full Text PDF

Efficacy of sodium-glucose cotransporter 2 inhibitors for kidney stone prevention in nondiabetic patients is unknown. In a double-blind, placebo-controlled, single-center, crossover phase 2 trial, 53 adults (≥18 and <75 years) with calcium (n = 28) or uric acid (UA; n = 25) kidney stones (at least one previous kidney stone event) without diabetes (HbA1c < 6.5%, no diabetes treatment) were randomized to once daily empagliflozin 25 mg followed by placebo or reverse (2 weeks per treatment).

View Article and Find Full Text PDF

γ-radiation induced reduction in antinutrients of buckwheat ( Moench) seeds and leaves.

Int J Radiat Biol

January 2025

Department of Biochemistry, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture & Technology, Pantnagar (U. S. Nagar), Uttarakhand, India.

Purpose: Buckwheat, a dicotyledonous crop of Polygonaceae family, is known for its nutritional value and adaptability to adverse climates. Local people reported that prolonged consumption of buckwheat seeds and leaves causes numbness and gastrointestinal problems. The present study was conducted to observe the impact of different doses of γ-radiations on phytoconstituents of buckwheat seeds and leaves, to make them nutritionally superior.

View Article and Find Full Text PDF

Introduction: Free radical-mediated oxidative renal tubular injury secondary to hyperoxaluria is a proposed mechanism in the formation of calcium oxalate stones. Vitamin E, an important physiologic antioxidant, has been shown in rat models to prevent calcium oxalate crystal deposition. Our objective was to determine if low dietary vitamin E intake was associated with a higher incidence of stones.

View Article and Find Full Text PDF

Kidney stone disease is a major risk factor for impaired renal function, leading to renal fibrosis and end-stage renal disease. High global prevalence and recurrence rate pose a significant threat to human health and healthcare resources. Investigating the mechanisms of kidney stone-induced injury is crucial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!