Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: As global climate change accelerates, ecologists and conservationists are increasingly investigating changes in biodiversity and predicting species distribution based on species observed at sites, but rarely consider those plant species that could potentially inhabit but are absent from these areas (i.e., the dark diversity and its distribution). Here, we estimated the dark diversity of vascular plants in China and picked up threatened dark species from the result, and applied maximum entropy (MaxEnt) model to project current and future distributions of those dark species in their potential regions (those regions that have these dark species).
Methods: We used the Beals probability index to estimate dark diversity in China based on available species distribution information and explored which environmental variables had significant impacts on dark diversity by incorporating bioclimatic data into the random forest (RF) model. We collected occurrence data of threatened dark species (, , , , , and ) and related bioclimatic information that can be used to predict their distributions. In addition, we used MaxEnt modeling to project their distributions in suitable areas under future (2050 and 2070) climate change scenarios.
Results: We found that every study region's dark diversity was lower than its observed species richness. In these areas, their numbers of dark species are ranging from 0 to 215, with a generally increasing trend from western regions to the east. RF results showed that temperature variables had a more significant effect on dark diversity than those associated with precipitation. The results of MaxEnt modeling showed that most threatened dark species were climatically suitable in their potential regions from current to 2070.
Discussions: The results of this study provide the first ever dark diversity patterns concentrated in China, even though it was estimated at the provincial scale. A combination of dark diversity and MaxEnt modeling is an effective way to shed light on the species that make up the dark diversity, such as projecting the distribution of specific dark species under global climate change. Besides, the combination of dark diversity and species distribution models (SDMs) may also be of value for ex situ conservation, ecological restoration, and species invasion prevention in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6461033 | PMC |
http://dx.doi.org/10.7717/peerj.6731 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!