Use of a new RNA next generation sequencing approach for the specific detection of virus infection in cells.

Biologicals

PathoQuest, Paris, France; National Veterinary School of Alfort, Paris-Est University, Maisons-Alfort, France; Pathogen Discovery Laboratory, Biology of Infection Unit, Institut Pasteur, Paris, France. Electronic address:

Published: May 2019

The utilization of the current combination of in vitro, in vivo and PCR assays for the identification of adventitious viruses in production cells has a limited range of detection. While Next Generation Sequencing (NGS) has a broader breadth of detection, it is unable to differentiate sequences from replicating viruses versus background inert sequences. In order to improve NGS specificity, we have designed a new NGS approach which targets subsets of viral RNAs only synthesized during cell infection. In order to evaluate the performance of this approach for detecting low levels of adventitious viruses, we selected two difficult virus/cell systems. This included B95-8 cells persistently infected by Human herpesvirus 4 (HHV-4) and serially diluted into HHV-4 negative Ramos cells and Madin-Darby bovine kidney cells with an early infection produced via a low dose of Bovine viral diarrhea virus. We demonstrated that the sensitivity of our RNA NGS approach was equivalent to targeted PCR with an increased specificity for the detection of viral infection. We were also able to identify a previously undetected Murine Leukemia Virus contaminant in Ramos cells. Based on these results, we conclude that this new RNA NGS approach is suitable for conducting viral safety evaluations of cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biologicals.2019.03.008DOI Listing

Publication Analysis

Top Keywords

ngs approach
12
generation sequencing
8
adventitious viruses
8
ramos cells
8
rna ngs
8
cells
6
approach
5
ngs
5
rna generation
4
sequencing approach
4

Similar Publications

Objective: Community engagement is an increasingly important component of ancient DNA (aDNA) research, especially when it involves archeological individuals connected to contemporary descendants or other invested communities. However, effectively explaining methods to non-specialist audiences can be challenging due to the intricacies of aDNA laboratory work. To overcome this challenge, the Anson Street African Burial Ground (ASABG) Project employed a GoPro camera to visually document the process of aDNA extraction for use in community engagement and education events.

View Article and Find Full Text PDF

Carcinoma of unknown primary (CUP) is a diverse group of malignancies characterized by metastatic disease without an identified primary site. It typically presents with a poor prognosis due to widespread metastasis at diagnosis. This report discusses a 58-year-old female patient with advanced CUP and diffuse liver metastasis.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease with poor prognosis and limited treatment options. While the majority of PDAC cases harbor KRAS mutations, approximately 8%-10% are KRAS wild-type (KRAS-WT). These KRAS-WT tumors often contain actionable mutations and gene fusions, making them more suitable for precision therapies.

View Article and Find Full Text PDF

Background: Despite the use of Next-Generation Sequencing (NGS) as the gold standard for the diagnosis of rare diseases, its clinical implementation has been challenging, limiting the cost-effectiveness of NGS and the understanding, control and safety essential for decision-making in clinical applications. Here, we describe a personalized NGS-based strategy integrating precision medicine into a public healthcare system and its implementation in the routine diagnosis process during a five-year pilot program.

Methods: Our approach involved customized probe designs, the generation of virtual panels and the development of a personalized medicine module (PMM) for variant prioritization.

View Article and Find Full Text PDF

Background: Genomic data is essential for clinical decision-making in precision oncology. Bioinformatic algorithms are widely used to analyze next-generation sequencing (NGS) data, but they face two major challenges. First, these pipelines are highly complex, involving multiple steps and the integration of various tools.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!