Phylogenetic mapping of scale nanostructure diversity in snakes.

BMC Evol Biol

Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Sciences III, 30, Quai Ernest-Ansermet, 1211, Geneva 4, Switzerland.

Published: April 2019

Background: Many species of snakes exhibit epidermal surface nanostructures that form complex motifs conferring self-cleaning properties, and sometimes structural iridescence, to their skin.

Results: Using confocal microscopy, we show that these specialised cells can be greatly elongated along their left-right axis and that different types of nanostructures are generated by cell borders and cell surface. To characterise the complexity and diversity of these surface gratings, we analysed scanning electron microscopy images of skin sheds from 353 species spanning 19 of the 26 families of snakes and characterised the observed nanostructures with four characters. The full character matrix, as well as one representative SEM image of each of the corresponding species, is available as a MySQL relational database at https://snake-nanogratings.lanevol.org . We then performed continuous-time Markov phylogenetic mapping on the snake phylogeny, providing an evolutionary dynamical estimate for the different types of nanostructures. These analyses suggest that the presence of cell border digitations is the ancestral state for snake skin nanostructures which was subsequently and independently lost in multiple lineages. Our analyses also indicate that cell shape and cell border shape are co-dependent characters whereas we did not find correlation between a simple life habit classification and any specific nanomorphological character.

Conclusions: These results, compatible with the fact that multiple types of nanostructures can generate hydrophobicity, suggest that the diversity and complexity of snake skin surface nano-morphology are dominated by phylogenetic rather than habitat-specific functional constraints. The present descriptive study opens the perspective of investigating the cellular self-organisational cytoskeletal processes controlling the patterning of different skin surface nanostructures in snakes and lizards.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6469093PMC
http://dx.doi.org/10.1186/s12862-019-1411-6DOI Listing

Publication Analysis

Top Keywords

types nanostructures
12
phylogenetic mapping
8
surface nanostructures
8
cell border
8
snake skin
8
skin surface
8
nanostructures
7
surface
5
cell
5
mapping scale
4

Similar Publications

This paper explores the process of forming arrays of vertically oriented carbon nanotubes (CNTs) localized on metal electrodes using thin porous anodic alumina (PAA) on a solid substrate. On a silicon substrate, a titanium film served as the electrode layer, and an aluminium film served as the base layer in the initial film structure. A PAA template was formed from the Al film using two-step electrochemical anodizing.

View Article and Find Full Text PDF

Skin cancer stands as a challenging global health concern, necessitating innovative approaches to cure deficiencies within traditional therapeutic modalities. While conventional drug delivery methods through injection or oral administration have long prevailed, the emergence of topical drug administration presents a compelling alternative. The skin, aside from offering a swift and painless procedure, serves as a reservoir, maintaining drug efficacy over extended durations.

View Article and Find Full Text PDF

Zebrafish serve as a pivotal model for bioimaging and toxicity assessments; however, the toxicity of banana peel-derived carbon dots in zebrafish has not been previously reported. The aim of this study was to assess the toxicity of carbon dots derived from banana peel in zebrafish, focusing on two types prepared through hydrothermal and pyrolysis methods. Banana peels were synthesized using hydrothermal and pyrolysis techniques and then compared for characteristics, bioimaging ability, and toxicity in zebrafish as an animal model.

View Article and Find Full Text PDF

The rapid growth in the global population has led to increased environmental pollution and energy demands, exacerbating the issue of environmental contamination. This contamination is significantly impacted by various types of pesticides found in water sources, which pose serious health risks to humans, animals, and aquatic ecosystems. In response, extensive research into water treatment technologies has been conducted, focusing on efficient methods to remove these pollutants, with advanced oxidation processes and the utilization of tungsten trioxide (WO) as a photocatalyst showing promising results.

View Article and Find Full Text PDF

l-Asparaginase (l-ASNase) catalyzes the hydrolysis of l-asparagine, leading to its depletion and subsequent effects on the cellular proliferation and survival. In contrast to normal cells, malignant cells that lack asparagine synthase are extremely susceptible to asparagine deficiency. l-ASNase has been successfully employed in treating pediatric leukemias and non-Hodgkin lymphomas; however, its usage in adult patients and other types of cancer is limited due to significant side effects and drug resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!