Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fracture remains one of the most common traumatic conditions in orthopedic surgery. The use of mesenchymal stem cells (MSCs) to augment fracture repair is promising. Leucine-rich repeat-containing GPCR 5 (Lgr5), a transmembrane protein, has been identified as a novel adult stem cell marker in various organs and tissues. However, the roles of Lgr5 in MSCs are not fully understood. In this study, we investigated cellular functions of Lgr5 in MSCs and its potential implications in treating fracture. Lgr5-overexpressing MSCs (MSC) were established in murine SV40 promoter-driven luciferase reporter MSC line through virus transfection. Results of real-time quantitative PCR and Western blot analysis confirmed the increased expression of Lgr5 in MSC. MSC exhibited increased osteogenic capacity, which may result from elevated expression of β-catenin and phosphorylated ERK1/2 within the nuclear region of cells. In contrast, inhibition of Lgr5 expression decreased the osteogenic differentiation ability of MSCs, accompanied with increased mitochondrial fragmentation and reduced expression of β-catenin. Local transplantation of MSC at fracture sites accelerated fracture healing enhanced osteogenesis and angiogenesis. MSC stimulated the tube formation capacity of HUVECs in a Matrigel coculture system significantly. Taken together, results suggest that Lgr5 is implicated in the cellular processes of osteogenic differentiation of MSCs through regulation of Wnt and ERK signaling pathways and mitochondrial dynamics in fusion and fission. Inhibition of Lgr5 expression induced increased mitochondrial fragmentation and suppression of osteogenesis. MSC exhibited enhanced therapeutic efficacy for fracture healing, which may serve as a superior cell source for bone tissue repair.-Lin, W., Xu, L., Pan, Q., Lin, S., Feng, L., Wang, B., Chen, S., Li, Y., Wang, H., Li, Y., Wang, Y., Lee, W. Y. W., Sun, D., Li, G. Lgr5-overexpressing mesenchymal stem cells augment fracture healing through regulation of Wnt/ERK signaling pathways and mitochondrial dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.201900082RR | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!