Four pairs of amino acid-functionalized naphthalenediimide enantiomers (d- and l-lysine derived NDIs) were screened toward G-quadruplex forming sequences in telomeres (h-TELO) and oncogene promoters: c-KIT1, c-KIT2, k-RAS and BCL-2. This is the first study to address the effect of point chirality toward G-quadruplex DNA stabilization using purely small organic molecules. Enantioselective behavior toward the majority of ligands was observed, particularly in the case of parallel conformations of c-KIT2 and k-RAS. Additionally, -Boc-l-Lys-NDI and -Boc-d-Lys-NDI discriminate between quadruplexes with parallel and hybrid topologies, which has not previously been observed with enantiomeric ligands.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6514905 | PMC |
http://dx.doi.org/10.3390/molecules24081473 | DOI Listing |
Org Biomol Chem
January 2025
College of Marine Sciences, Beibu Gulf University, Qinzhou, China.
Correction for 'A novel platinum(II) complex with a berberine derivative as a potential antitumor agent targeting G-quadruplex DNA' by Shu-Lin Zhang , , 2025, https://doi.org/10.1039/d4ob01705f.
View Article and Find Full Text PDFAnal Chem
January 2025
Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education; Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies; School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
Developing a DNA autocatalysis-oriented cascade circuit (AOCC) via reciprocal navigation of two enzyme-free hug-amplifiers might be desirable for constructing a rapid, efficient, and sensitive assay-to-treat platform. In response to a specific trigger (), seven functional DNA hairpins were designed to execute three-branched assembly (TBA) and three isotropic hybridization chain reaction (3HCR) events for operating the AOCC. This was because three new inducers were reconstructed in TBA arms to initiate 3HCR (TBA-to-3HCR) and periodic repeats were resultantly reassembled in the tandem nicks of polymeric nanowires to rapidly activate TBA in the opposite direction (3HCR-to-TBA) without steric hindrance, thereby cooperatively manipulating sustainable AOCC progress for exponential hug-amplification (1:3).
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.
In this study, we present an intelligent electromagnetic-actuated microfluidic chip integrated with a G-quadruplex DNAzyme-based biocatalysis platform for rapid and sensitive tetracycline (TC) detection. In this sensing system, TC significantly quenches fluorescent magnetic carbon dots (M-CDs) via the internal filtration effect and dynamic quenching (the excitation and emission wavelength at 350 and 440 nm, respectively). Then, the G-quadruplex on the M-CDs-Aptamer is exposed and bound with hemin to form hemin-G-quadruplex DNAzyme, catalyzing the conversion of 3,3',5,5'-tetramethylbenzidine to produce blue color.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.
The development of intelligent nanotheranostic technology that integrates diagnostic and therapeutic functions holds great promise for personalized nanomedicine. However, most of the nanotheranostic agents exhibit "always-on" properties and do not involve an amplification step, which may largely limit imaging contrast and restrict therapeutic efficacy. Herein, we construct a novel nanotheranostic platform (Hemin/DHPs/PDA@CuS nanocomposite) by assembling DNA hairpin probes (DHPs) and hemin on the surface of PDA@CuS nanosheets that enables amplified fluorescence imaging and activatable chemodynamic therapy (CDT) of tumors.
View Article and Find Full Text PDFJ Med Chem
January 2025
Guangdong Medicine-Engineering Interdisciplinary Technology Research Center, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
Positron emission tomography (PET) is a common imaging technique and can provide accurate information about the size, shape, and location of tumors. Recent evidence has shown that G-quadruplex structures (G4s) are identified in human oncogenes, and these special structures are recognized as diagnostic cancer markers and drug targets for anticancer therapies. Although a number of techniques for in vivo imaging of G4s have been developed, achieving sufficient sensitivity and selectivity in vivo remains challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!