After acute myocardial infarction (AMI), reactive oxygen species and oxidative stress have important roles in the progression to heart failure. As a therapeutic alternative, thyroid hormones (TH) revealed cardioprotective effects after AMI, including decreasing oxidative stress. Carvedilol beta-blocker, already used in the clinical treatment of AMI, also mitigate cardiac pathological remodelling. This study assessed the effects of post-AMI carvedilol and TH co-administration on oxidative stress and cardiac function as well as whether those effects were synergistic. Male Wistar rats were divided into five groups: sham-operated (SHAM), infarcted (MI), infarcted + TH (MI + TH), infarcted + carvedilol (MI + C) and infarcted + C + TH (MI + C + TH). Two days post-surgery, the SHAM and MI groups received saline, and treated groups received their respective treatments by gavage for 12 days. The animals were submitted to echocardiographic evaluation, ventricular catheterization and euthanized for heart collection to perform oxidative stress analysis. Treated groups improved for ejection fraction compared to the MI group. Carvedilol decreased the positive chronotropic TH effects in the MI + C + TH group. The MI and MI + C groups had increased reactive oxygen species and reduced sulfhydryl levels. Carvedilol and TH co-administration showed synergic effects in the MI + C + TH group, reducing reactive oxygen species levels and improving GSH/GSSG ratio. Moreover, co-treatment attenuated NADPH oxidase activity in the MI group. Therefore, this study showed for the first time that carvedilol and TH co-administration may improve redox balance and cardiac function after AMI. Such co-administration could represent a therapeutic strategy capable of preventing cardiac dysfunction and redox unbalance after AMI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2019.04.024 | DOI Listing |
Viruses
December 2024
Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine.
Metformin, a widely used antidiabetic medication, has emerged as a promising broad-spectrum antiviral agent due to its ability to modulate cellular pathways essential for viral replication. By activating AMPK, metformin depletes cellular energy reserves that viruses rely on, effectively limiting the replication of pathogens such as influenza, HIV, SARS-CoV-2, HBV, and HCV. Its role in inhibiting the mTOR pathway, crucial for viral protein synthesis and reactivation, is particularly significant in managing infections caused by HIV, CMV, and EBV.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA.
Multidrug-resistant tuberculosis (MDR-TB) poses a significant global health threat, especially when it involves the central nervous system (CNS). Tuberculous meningitis (TBM), a severe manifestation of TB, is linked to high mortality rates and long-term neurological complications, further exacerbated by drug resistance and immune evasion mechanisms employed by Mycobacterium tuberculosis (Mtb). Although pulmonary TB remains the primary focus of research, MDR-TBM introduces unique challenges in diagnosis, treatment, and patient outcomes.
View Article and Find Full Text PDFPharmaceutics
December 2024
Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832003, China.
With the increase of reactive oxygen species (ROS) production, cancer cells can avoid cell death and damage by up-regulating antioxidant programs. Therefore, it will be more effective to induce cell death by using targeted strategies to further improve ROS levels and drugs that inhibit antioxidant programs. Considering that dihydroartemisinin (DHA) can cause oxidative damage to protein, DNA, or lipids by producing excessive ROS, while, disulfiram (DSF) can inhibit glutathione (GSH) levels and achieve the therapeutic effect by inhibiting antioxidant system and amplifying oxidative stress, they were co-loaded onto the copper peroxide nanoparticles (CuO) coated with copper tannic acid (Cu-TA), to build a drug delivery system of CuO@Cu-TA@DSF/DHA nanoparticles (CCTDD NPs).
View Article and Find Full Text PDFPharmaceutics
December 2024
Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children's at Diamond Children's Medical Center, 1656 E Mabel St, Rm 230, Tucson, AZ 85721, USA.
Dysregulated inflammation and oxidative stress are strongly implicated in the pathogenesis of inflammatory bowel disease. We have developed a novel therapeutic that targets inflammation and oxidative stress. It is comprised of microRNA-146a (miR146a)-loaded cerium oxide nanoparticles (CNPs) (CNP-miR146a).
View Article and Find Full Text PDFPharmaceutics
November 2024
Department of Life and Environmental Sciences, University of Cagliari, S.P. Monserrato-Sestu km 0.700, 09042 Cagliari, Italy.
: Horseradish ( L.) roots-largely used in traditional medicine for their multiple therapeutic effects-are a rich source of health-promoting phytochemicals. However, their efficacy can be compromised by low chemical stability and poor bioavailability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!