During spermatogenesis, interconnected haploid spermatids segregate undesired cellular contents into residual bodies (RBs) before detaching from RBs. It is unclear how this differentiation process is controlled to produce individual spermatids or motile spermatozoa. Here, we developed a live imaging system to visualize and investigate this process in C. elegans. We found that non-muscle myosin 2 (NMY-2)/myosin II drives incomplete cytokinesis to generate connected haploid spermatids, which are then polarized to segregate undesired cellular contents into RBs under the control of myosin II and myosin VI. NMY-2/myosin II extends from the pseudo-cleavage furrow formed between two haploid spermatids to the spermatid poles, thus promoting RB expansion. In the meantime, defective spermatogenesis 15 (SPE-15)/myosin VI migrates from spermatids towards the expanding RB to promote spermatid budding. Loss of myosin II or myosin VI causes distinct cytoplasm segregation defects, while loss of both myosins completely blocks RB formation. We found that the final separation of spermatids from RBs is achieved through myosin VI-mediated cytokinesis, while myosin II is dispensable at this step. SPE-15/myosin VI and F-actin form a detergent-resistant actomyosin VI ring that undergoes continuous contraction to promote membrane constriction between spermatid and RB. We further identified that RGS-GAIP-interacting protein C terminus (GIPC)-1 and GIPC-2 cooperate with myosin VI to regulate contractile ring formation and spermatid release. Our study reveals distinct roles of myosin II and myosin VI in spermatid differentiation and uncovers a novel myosin VI-mediated cytokinesis process that controls spermatid release.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6485759 | PMC |
http://dx.doi.org/10.1371/journal.pbio.3000211 | DOI Listing |
J Dev Biol
November 2024
Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
Barth syndrome (BTHS) is a rare, infantile-onset, X-linked mitochondriopathy exhibiting a variable presentation of failure to thrive, growth insufficiency, skeletal myopathy, neutropenia, and heart anomalies due to mitochondrial dysfunction secondary to inherited TAFAZZIN transacetylase mutations. Although not reported in BTHS patients, male infertility is observed in several () mouse alleles and in a mutant. Herein, we examined the male infertility phenotype in a BTHS-patient-derived point-mutant knockin mouse () allele that expresses a mutant protein lacking transacetylase activity.
View Article and Find Full Text PDFBiol Direct
December 2024
Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, P. R. China.
Spermatogonial stem cells (SSCs) form haploid gametes through the precisely regulated process of spermatogenesis. Within the testis, SSCs undergo self-renewal through mitosis, differentiation, and then enter meiosis to generate mature spermatids. This study utilized single-cell RNA sequencing on 26,888 testicular cells obtained from five Holstein bull testes, revealing the presence of five distinct germ cell types and eight somatic cell types in cattle testes.
View Article and Find Full Text PDFbioRxiv
October 2024
Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI.
The house mouse X and Y chromosomes have recently acquired high copy number, rapidly evolving gene families representing an evolutionary arms race. This arms race between proteins encoded by X-linked / and Y-linked gene families can distort male offspring sex ratio, but how these proteins compete remains unknown. Here, we report how / and encoded proteins compete in a protein family-specific and dose-dependent manner using yeast.
View Article and Find Full Text PDFNucleic Acids Res
November 2024
Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA.
Nat Commun
September 2024
Joint Lab of Reproductive Medicine of SCU-CUHK, Lab of Reproductive genetics and Epigenetics, Department of Obstetrics/Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, 610041, Chengdu, China.
Spermiogenesis, the complex transformation of haploid spermatids into mature spermatozoa, relies on precise spatiotemporal regulation of gene expression at the post-transcriptional level. The mechanisms underlying this critical process remain incompletely understood. Here, we identify centrosomal protein 112 (CEP112) as an essential regulator of mRNA translation during this critical developmental process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!