The purpose of this study was to improve the solubility of resveratrol (Res) by a self-microemulsifying drug-delivery system (SMEDDS). Through a solubility experiment, the pseudoternary phase diagram and ternary phase diagram were used to optimize the Res SMEDDS formula. The optimum formulation consisted of 5% IPM, 20% PEG400, and 65% Cremophor RH40. The water solubility, stability, in vitro release and antioxidant activity of the Res SMEDDS were characterized. The Res solubility in the SMEDDS was at least 1,000 times compared to that in water. The average droplet size of the microemulsion was 28.00±1.67 nm and uniform distribution. The Res SMEDDS should be stored at low temperature and in the dark to avoid light conditions. Res SMEDDS was able to improve the in vitro release rate of Res, and the in vitro release of Res from Res SMEDDS was significantly faster that of Res powder and unaffected by pH value of media. Antioxidant assays showed that antioxidant activities of Res in Res SMEDDS were unaffected compared to Res powder. Cytotoxicity study indicated that Res SMEDDS at the concentration of less than 100 μM was safe. These results demonstrated the potential use of Res SMEDDS for oral administration of Res.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6467382 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0214544 | PLOS |
Drug Deliv Transl Res
January 2025
Faculty of Health Sciences (FCS), University of Beira Interior, Av. Infante D. Henrique, Covilhã, 6200-506, Portugal.
The repurposing of statins as neuroprotective agents and/or anti-brain tumor drugs is limited by challenges in brain bioavailability and systemic off-target effects. Therefore, improved and targeted delivery of statins to the brain is necessary. This study aimed to develop a high-strength liquid formulation of the poorly soluble prodrug simvastatin for intranasal administration, as a strategy to achieve high brain concentrations of the prodrug and/or its active form, tenivastatin.
View Article and Find Full Text PDFDrug Deliv Transl Res
August 2024
School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, 530000, PR China.
Drug Deliv Transl Res
June 2024
Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China.
Silymarin (SM) exhibits clinical efficacy in treating liver injuries, cirrhosis, and chronic hepatitis. However, its limited water solubility and low bioavailability hinder its therapeutic potential. The primary objective of this study was to compare the in vitro and in vivo characteristics of the four distinct SM solubilization systems, namely SM solid dispersion (SM-SD), SM phospholipid complex (SM-PC), SM sulfobutyl ether-β-cyclodextrin inclusion complex (SM-SBE-β-CDIC) and SM self-microemulsifying drug delivery system (SM-SMEDDS) to provide further insights into their potential for enhancing the solubility and bioavailability of SM.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2023
Grade Three Laboratory of Traditional Chinese Medicine Preparation of the National Administration of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
Polyphyllin I (PPI), an effective active ingredient in Paris polyphylla, has a diverse set of pharmacological properties. However, due to its poor solubility and oral absorption, its application and development are limited. In the study, we were committed to improving the solubility of PPI by developing a self-microemulsifying drug delivery system of PPI (PPI-SMEDDS), screening the best preparation process, and evaluating the quality and the in vivo pharmacokinetics of PPI, and PPI-SMEDDS following oral administration to rats were also studied.
View Article and Find Full Text PDFDrug Deliv Transl Res
July 2022
B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat, India.
Lipid-based emulsion system - a subcategory of emulsion technology, has emerged as an enticing option to improve the solubility of the steadily rising water-insoluble candidates. Along with enhancing solubility, additional advantages such as improvement in permeability, protection against pre-systemic metabolism, ease of manufacturing, and easy to scale-up have made lipid-based emulsion technology very popular among academicians and manufacturers. The present article provides a comprehensive review regarding various critical properties of lipid-based emulsion systems, such as microemulsion, nanoemulsion, SMEDDS (self microemulsifying drug delivery system), and SNEDDS (self nanoemulsifying drug delivery system).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!