New phospha[5]helicene derivatives featuring angular fusion of phosphole and carbohelicene moieties have been synthesized using 7-hydroxybenzo[ b]phosphole oxide as a key intermediate, which can be regioselectively prepared through one-pot multicomponent coupling. The structural behavior of the present phospha[5]helicene oxide, sulfide, and gold complex in the solid and solution states, along with DFT calculations, demonstrated close correlation between the P-centered chirality and the helical chirality as well as facile helicity inversion and equilibrium between the diastereomers in solution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.orglett.9b00955 | DOI Listing |
Nanoscale
January 2025
Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
Additive manufacturing (AM) of magnetic materials has recently attracted increasing interest for various applications but is often limited by the high cost and supply chain risks of rare-earth-element (REE) magnetic precursors. Recent advances in nanomanufacturing have enabled the development of rare-earth-free (REF) magnetic materials, such as spinel ferrites, hexaferrites, MnAl, MnBi, Alnico, FePt, and iron oxides/nitrides, which offer promising alternatives for printing high-performance magnetic devices. This review provides a detailed overview of the latest developments in REF magnetic materials, covering both synthesis strategies of REF magnetic materials/nanomaterials and their integration into AM processes.
View Article and Find Full Text PDFNanoscale
January 2025
State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, No. 29, 13th Street, TEDA, Tianjin 300457, P. R. China.
The remarkable catalytic activity, optical properties, and electrochemical behavior of nanomaterials based on noble metals (NM) are profoundly influenced by their physical characteristics, including particle size, morphology, and crystal structure. Effective regulation of these parameters necessitates a refined methodology. Lignin, a natural aromatic compound abundant in hydroxyl, carbonyl, carboxyl, and sulfonic acid groups, has emerged as an eco-friendly surfactant, reducing agent, and dispersant, offering the potential to precisely control the particle size and morphology of NM-based nanomaterials.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Department of Computer Science and Engineering, and Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
Despite remarkable advancements in the organic synthesis field facilitated by the use of machine learning (ML) techniques, the prediction of reaction outcomes, including yield estimation, catalyst optimization, and mechanism identification, continues to pose a significant challenge. This challenge arises primarily from the lack of appropriate descriptors capable of retaining crucial molecular information for accurate prediction while also ensuring computational efficiency. This study presents a successful application of ML for predicting the performance of Ir-catalyzed allylic substitution reactions.
View Article and Find Full Text PDFSmall
January 2025
Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
To rival commercial organic electrolytes, it is important to focus on safe, cheap aqueous electrolytes with lower salt concentration (≈5.0 m) and a wider electrochemical stable potential window (ESPW). This study reports the facile synthesis of porphyrin-based covalent organic polymers (PTZ-COP, CBZ-COP, and TPA-COP) through a one-pot aromatic electrophilic polycondensation reaction between pyrrole and monomeric aldehydes (PTZ-CHO, CBZ-CHO and TPA-CHO).
View Article and Find Full Text PDFACS Appl Polym Mater
December 2024
Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6DX, United Kingdom.
This paper describes the synthesis, characterization, and supramolecular assembly of polyurethane elastomers. Bis-aromatic urea hydrogen-bonding motifs have been used to promote the self-assembly of the materials. The materials described comprise a soft block, namely, polytetramethylene ether glycol (PTMG), as a telechelic diol and hard crystalline domains that feature a bis-aromatic urea hydrogen bonding motif as a chain extender.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!