Flexible micro/nano metal grid transparent conductors emerged as an alternative to the fragile/rigid indium tin oxide electrode. They are usually fabricated by the combination of the conventional photolithography and the vacuum deposition of regular metal grid patterns, however, seriously suffer from moiré and starburst problems induced by periodic regular pattern structures. In this paper, we demonstrated flexible and imperceptible random copper microconductors with an extremely high figure-of-merit (∼2000) by the thermal conduction layer-assisted photonic sintering of copper nanoparticles without damages in the plastic substrate. This process can be easily applied to complicated structures and surfaces including a random pattern which is imperceptible and free of interferences. As a proof-of-concept, a transparent windshield defogger in a car was demonstrated with a Cu transparent random conductor at an extreme and reversible fogging state.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b01893DOI Listing

Publication Analysis

Top Keywords

metal grid
12
photonic sintering
8
copper nanoparticles
8
moiré-free imperceptible
4
imperceptible flexible
4
random
4
flexible random
4
random metal
4
grid electrodes
4
electrodes large
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!