A new model has been reported here to estimate the mean size and size distribution in nanostructured materials by utilizing a simple and economic diffuse reflectance spectroscopy through spectral line-shape analysis. In the proposed model, a theoretical line shape has been derived by taking into account a size distribution function, which represents a variation in absorption coefficient as a function of size, which in turn depends on the band gap and thus on the excitation photon energy. A fitting of the experimental absorption spectra with the derived line-shape function yields the mean crystallite size and size distribution. The size and size distribution have been successfully estimated from two different silicon nanostructured samples, prepared by metal induced etching. The model has been validated by comparing the estimated values with the sizes estimated using Raman spectroscopy, which is a well-known technique. The two results are not only consistent with each other but are also found to be consistent with the electron microscopy's results, revealing that a technique as simple and as economic as diffuse reflectance spectroscopy can be used to estimate size distribution. In addition, the proposed model can also be used to investigate the homogeneity in the size distribution in a nanostructured sample.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.9b01935DOI Listing

Publication Analysis

Top Keywords

size distribution
24
diffuse reflectance
12
size size
12
size
11
estimate size
8
distribution nanostructured
8
simple economic
8
economic diffuse
8
reflectance spectroscopy
8
proposed model
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!