A novel passive exchange meter (EM) device was developed to assess air-surface exchange and leaching of Hg in a forest floor. Flux measurements were carried out in a subtropical forest ecosystem during a full year. Over 40% of the Hg fixed in fresh forest litter was remobilized in less than 60 days in warm and humid conditions as a response to rapid turnover of labile organic matter (OM). A two-block experiment including understory and clearing showed that losses of Hg covaried with seasonal conditions and was significantly affected by forest coverage. The process controlling the bulk loss of total Hg from the litter was volatilization, which typically represented 76-96% of the loss processes (F). The F ranges were 520-1370 and 165-942 ng m d in the understory and clearing, respectively. On a yearly basis, deposition of airborne Hg exceeded total losses by a factor of 2.5 in the clearing and 1.5 in the understory. The vegetation litter in this subtropical forest therefore represented a net sink of atmospheric Hg. This study provided a novel approach to Hg air-soil exchange measurements and further insights on the link between Hg remobilization and OM turnover along with its environmental drivers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.8b06343 | DOI Listing |
Trop Dis Travel Med Vaccines
January 2025
Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, UK.
Oropouche fever is an increasingly significant health concern in tropical and subtropical areas of South and Central America, and is primarily spread by midge vectors. The Oropouche virus (OROV) was first identified in 1955 and has been responsible for numerous outbreaks, particularly in urban environments. Despite its prevalence, the disease is often under-reported, making it difficult to fully understand its impact.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China.
Background: Nutrient limitation is a universal phenomenon in terrestrial ecosystems. Root and mycorrhizal are critical to plant nutrient absorption in nutrient-limited ecosystems. However, how they are modified by N and P limitations with advancing vegetation successions in karst forests remains poorly understood.
View Article and Find Full Text PDFNat Ecol Evol
January 2025
ARC Centre for Plant Success in Nature & Agriculture, Hawkesbury Institute for the Environment, Western Sydney University, Sydney, New South Wales, Australia.
Wind is an important ecological factor for plants as it can increase evapotranspiration and cause dehydration. However, the impact of wind on plant hydraulics at a global scale remains unclear. Here we compiled plant key hydraulic traits, including water potential at 50% loss of hydraulic conductivity (P), xylem-specific hydraulic conductivity (K), leaf area to sapwood area ratio (A/A) and conduit diameter (D) with 2,786 species-at-site combinations across 1,922 woody species at 469 sites worldwide and analysed their correlations with wind speed.
View Article and Find Full Text PDFPlant Dis
December 2024
Department of Plant Protection, Biotechnical Faculty, University of Montenegro, 81000 Podgorica, Montenegro.
Plant Physiol Biochem
December 2024
State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China. Electronic address:
Manganese (Mn) is an essential element for plant growth but can be toxic at high levels. Pecan (Carya illinoensis), an important nut-producing species, has been observed to exhibit tolerance to high Mn levels. In this study, pecan seedlings were exposed to a nutrient solution containing either 2 μM (control) or 1000 μM (excess) MnSO to investigate the physiological mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!