Multifidelity Information Fusion with Machine Learning: A Case Study of Dopant Formation Energies in Hafnia.

ACS Appl Mater Interfaces

Department of Materials Science & Engineering , Georgia Institute of Technology, Atlanta , Georgia 30332 , United States.

Published: July 2019

Cost versus accuracy trade-offs are frequently encountered in materials science and engineering, where a particular property of interest can be measured/computed at different levels of accuracy or fidelity. Naturally, the most accurate measurement is also the most resource and time intensive, while the inexpensive quicker alternatives tend to be noisy. In such situations, a number of machine learning (ML) based multifidelity information fusion (MFIF) strategies can be employed to fuse information accessible from varying sources of fidelity and make predictions at the highest level of accuracy. In this work, we perform a comparative study on traditionally employed single-fidelity and three MFIF strategies, namely, (1) Δ-learning, (2) low-fidelity as a feature, and (3) multifidelity cokriging (CK) to compare their relative prediction accuracies and efficiencies for accelerated property predictions and high throughput chemical space explorations. We perform our analysis using a dopant formation energy data set for hafnia, which is a well-known high- material and is being extensively studied for its promising ferroelectric, piezoelectric, and pyroelectric properties. We use a dopant formation energy data set of 42 dopants in hafnia-each studied in six different hafnia phases-computed at two levels of fidelities to find merits and limitations of these ML strategies. The findings of this work indicate that the MFIF based learning schemes outperform the traditional SF machine learning methods, such as Gaussian process regression and CK provides an accurate, inexpensive and flexible alternative to other MFIF strategies. While the results presented here are for the case study of hafnia, they are expected to be general. Therefore, materials discovery problems that involve huge chemical space explorations can be studied efficiently (or even made feasible in some situations) through a combination of a large number of low-fidelity and a few high-fidelity measurements/computations, in conjunction with the CK approach.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b02174DOI Listing

Publication Analysis

Top Keywords

machine learning
12
dopant formation
12
mfif strategies
12
multifidelity fusion
8
case study
8
chemical space
8
space explorations
8
formation energy
8
energy data
8
data set
8

Similar Publications

Background: The impact of aortic arch (AA) morphology on the management of the procedural details and the clinical outcomes of the transfemoral artery (TF)-transcatheter aortic valve replacement (TAVR) has not been evaluated. The goal of this study was to evaluate the AA morphology of patients who had TF-TAVR using an artificial intelligence algorithm and then to evaluate its predictive value for clinical outcomes.

Materials And Methods: A total of 1480 consecutive patients undergoing TF-TAVR using a new-generation transcatheter heart valve at 12 institutes were included in this retrospective study.

View Article and Find Full Text PDF

Importance: Biomarkers would greatly assist decision-making in the diagnosis, prevention, and treatment of chronic pain.

Objective: To undertake analytical validation of a sensorimotor cortical biomarker signature for pain consisting of 2 measures: sensorimotor peak alpha frequency (PAF) and corticomotor excitability (CME).

Design, Setting, And Participants: This cohort study at a single center (Neuroscience Research Australia) recruited participants from November 2020 to October 2022 through notices placed online and at universities across Australia.

View Article and Find Full Text PDF

Current approaches for classifying biosensor data in diagnostics rely on fixed decision thresholds based on receiver operating characteristic (ROC) curves, which can be limited in accuracy for complex and variable signals. To address these limitations, we developed a framework that facilitates the application of machine learning (ML) to diagnostic data for the binary classification of clinical samples, when using real-time electrochemical measurements. The framework was applied to a real-time multimeric aptamer assay (RT-MAp) that captures single-frequency (12.

View Article and Find Full Text PDF

Parkinson Disease (PD) is a complex neurological disorder attributed by loss of neurons generating dopamine in the SN per compacta. Electroencephalogram (EEG) plays an important role in diagnosing PD as it offers a non-invasive continuous assessment of the disease progression and reflects these complex patterns. This study focuses on the non-linear analysis of resting state EEG signals in PD, with a gender-specific, brain region-specific, and EEG band-specific approach, utilizing recurrence plots (RPs) and machine learning (ML) algorithms for classification.

View Article and Find Full Text PDF

Deep Learning of CYP450 Binding of Small Molecules by Quantum Information.

J Chem Inf Model

January 2025

Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, Indiana 47907, United States.

Drug-drug interaction can lead to diminished therapeutic effects or increased toxicity, posing significant risks, especially in polypharmacy, and cytochrome P450 plays an indispensable role in this interaction. Cytochrome P450, responsible for the metabolism and detoxification of most drugs, metabolizes about 90% of Food and Drug Administration-approved drugs, making early detection of potential drug-drug interactions. Over the years, in-silico modeling has become a valuable tool for predicting drug-drug interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!