Four bis-corroles linked by diamide bridges were synthesized through peptide-type coupling of a trans-A B-corrole acid with aliphatic and aromatic diamines. In the solid state, the hydrogen-bond pattern in these bis-corroles is strongly affected by the type of solvent used in the crystallization process. Although intramolecular hydrogen bonds play a decisive role, they are supported by intermolecular hydrogen bonds and weak N-H⋅⋅⋅π interactions between molecules of toluene and the corrole cores. In an analogy to mono(amido-corroles), both in crystalline state and in solutions, the aliphatic or aromatic bridge is located directly above the corrole ring. When either ethylenediamine or 2,3-diaminonaphthalene are used as linkers, incorporation of polar solvents into the crystalline lattice causes a roughly parallel orientation of the corrole rings. At the same time, both NHCO⋅⋅⋅NH corrole hydrogen bonds are intramolecular. In contrast, solvation in toluene causes a distortion with one of the hydrogen bonds being intermolecular. Interestingly, intramolecular hydrogen bonds are always formed between the -NHCO- functionality located further from the benzene ring present at the position 10-meso. In solution, the hydrogen-bonds pattern of the bis(amido-corroles) is strongly affected by the type of the solvent. Compared with toluene (strongly high-field shifted signals), DMSO and pyridine disrupt self-assembly, whereas hexafluoroisopropanol strengthens intramolecular hydrogen bonds.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201901254DOI Listing

Publication Analysis

Top Keywords

hydrogen bonds
24
intramolecular hydrogen
12
aliphatic aromatic
8
type solvent
8
hydrogen
6
bonds
6
intramolecular
5
covalently linked
4
linked bisamido-corroles
4
bisamido-corroles inter-
4

Similar Publications

Super-strong hydrogel reinforced by an interconnected hollow microfiber network via regulating the water-cellulose-copolymer interplay.

Sci Bull (Beijing)

January 2025

Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China. Electronic address:

The discontinuous fiber reinforced hydrogels are easy to fail due to the fracture of the fiber matrix during load-bearing. Here, we propose a novel strategy based on the synergistic reinforcement of interconnected natural fiber networks at multiple scales to fabricate hydrogels with extraordinary mechanical properties. Specifically, the P(AA-AM)/Cel (P(AA-AM), poly(acrylic acid-acrylamide); Cel, cellulose) hydrogel is synthesized by copolymerizing AA and AM on a substrate of paper with an interconnected hollow cellulose microfiber network.

View Article and Find Full Text PDF

Photothermal/photodynamic synergistic antibacterial Nanocellulose film modified with antioxidant MXene-PANI Nanosheets.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

TEMPO-CNF film modified by two-dimension transition metal MXene has certain antibacterial properties. However, the problem of long-lasting stability greatly restricts the feasibility of long-term use of the composite film. Here, we introduced polyaniline (PANI) as a modifying molecule, which was electrostatically adsorbed on the surface of the MXene nanosheets to prevent its self-stacking and delay its oxidation.

View Article and Find Full Text PDF

Enhancement of mechanical properties in reactive polyurethane film via in-situ assembly of embedded cellulose nanocrystals.

Int J Biol Macromol

January 2025

Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China. Electronic address:

Comparing to the solvent-based and waterborne polyurethanes (PU), the solvent-free reactive PU (RPU) is prepared via in-situ polymerization and film-formation of isocyanate-capped prepolymers and macromolecular polyols in solvent-free system. Thus, the carbon emissions and environmental pollutions are significantly reduced. However, the rapid polymerization also challenges the well control of structure and properties, especially the ordered microstructures.

View Article and Find Full Text PDF

The ternary complex effectively prevents droplet aggregation, Ostwald ripening, and phase separation through its gel network, thereby demonstrating its capability in bioactive compound delivery. In this work, the influence of varying chickpea protein isolate (CPI) levels on the microstructure, gel characteristics, stability and functional properties of grape seed proanthocyanidin (GSP) and konjac gum (KGM) stabilized ternary complexes was investigated. Visual appearance indicated the formation of a non-stratified ternary complex as the CPI enhanced to 3-4 %.

View Article and Find Full Text PDF

Enzymatic hydrolysis approach is commonly employed for preparation of active peptides, while the limited purity and yield of produced peptides hinder further development of action mechanisms. This study presents the biotechnological approach for the efficient production of recombinant angiotensin converting enzyme (ACE) inhibitory peptide LYPVK and investigates its potential antihypertensive action mechanism. DNA encoding sequence of recombinant peptide was designed to form in tandem, which was expressed in Escherichia coli BL21 (DE3).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!