Low-frequency vibration energy harvesting is becoming increasingly important for environmentally friendly and biomedical applications in order to power various wearable and implanted devices. In this paper, we propose the use of piezoelectric congruent LiNbO (LN) single crystals, with an engineered bidomain structure, as an alternative to the widely employed lead-based PZT. We thus compared experimentally the pure vibration energy scavenging performance of square-shaped bidomain and single-domain Y+128°-cut LN crystals and a conventional bimorph soft PZT ceramic bonded to long spring-steel cantilevers as a function of the frequency, load resistance, and tip proof mass. At a low bending resonance frequency of ca. 32.2 Hz, the bidomain LN yielded an open-circuit voltage of 1.54 kV/g, almost one order of magnitude larger than that observed in PZT. The maximum extractable average power was found to be of 9.2 mW/g in the bidomain LN, 6.2 mW/g in the single-domain LN, and 1.8 mW/g in the PZT piezo-elastic cantilevers. With five times higher output power density of up to 11.0 mW/(cm [Formula: see text]) under resonance conditions, bidomain LN was thus shown to be a reliable lead-free and high-temperature alternative to PZT, thanks to its considerably larger quality factor and electromechanical conversion efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TUFFC.2019.2908396DOI Listing

Publication Analysis

Top Keywords

vibration energy
12
low-frequency vibration
8
energy harvesting
8
linbo single
8
single crystals
8
bidomain
6
pzt
5
harvesting bidomain
4
bidomain linbo
4
crystals low-frequency
4

Similar Publications

Rolling bearings of the vibration exciter are prone to failure due to long-term high amplitude alternating impact loads, causing economic losses and threatening production safety. The heavy environmental noise during the operation of the vibration exciter and the high vibration level generated by the eccentric block make the weak bearing fault features submerged and difficult to extract. Teager-Kaiser energy operator is a popular method for extracting bearing fault features.

View Article and Find Full Text PDF

High-Performance Shear Mode Ultrasonic Transducer Operating at Ultrahigh Temperature Fabricated with BiSiO Piezoelectric Crystal.

ACS Appl Mater Interfaces

December 2024

Center for Optics Research and Engineering, State Key Laboratory of Crystal Materials, Shandong University, Qingdao 266237, China.

Shear mode ultrasonic waves are in high demand for structural health monitoring (SHM) applications owing to their nondispersive characteristics, singular mode, and minimal energy loss, especially in harsh environments. However, the generation and detection of a pure shear wave using conventional piezoelectric materials present substantial challenges because of their complex piezoelectric response, involving multiple modes. Herein, we introduce a high-quality piezoelectric crystal BiSiO (BSO), exhibiting a robust piezoelectric response ( = 45.

View Article and Find Full Text PDF

This study aims to modify raw zeolite with metal oxide nanocomposites to remove nickel (Ni) ions from synthetic wastewater. Novel zeolite-doped magnesium oxide (MgO), iron oxide (FeO), and zinc oxide (ZnO) nanocomposites were synthesized by hydrothermal-calcination methods. The novel zeolite-doped metal oxide nanocomposites were used as adsorbents to remove Ni (II) ions from synthetic wastewater.

View Article and Find Full Text PDF

This manuscript describes the successful synthesis of FeO nanoparticles coated with β-cyclodextrin-intercalated layered double hydroxide, which were utilized to remove Uranium (VI) from an aqueous solution effectively. The newly developed nano-adsorbent underwent thorough analysis through advanced techniques such as scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), and energy-dispersive X-ray analysis (EDX). Through the utilization of a one-variable-at-a-time strategy, we effectively enhanced the removal process by optimizing key factors such as the sample's pH and the amount of adsorbent utilized.

View Article and Find Full Text PDF

Spectroscopy and Dynamics of the Dipole-Bound States of -, -, and -Methylphenolate Anions.

J Phys Chem A

December 2024

Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea.

A photodetachment and photoelectron spectroscopic study by employing a cryogenically cooled ion trap combined with a velocity-map imaging setup has been carried out to unravel the vibrational structures and autodetachment dynamics of the dipole-bound states (DBSs) of -, -, and -methylphenolate anions (-, -, and -CHPhO). The electron binding energy of the DBS increases monotonically with the increase of the neutral dipole moment to give respective values of 66 ± 15, 123 ± 18, or 154 ± 14 cm for the -, -, or -isomer. The different electron-donating effects of the methyl moieties in the three geometrically different isomers seem to be reflected in the experiment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!