Although item-memory for emotional information is enhanced, memory for associations between items is often impaired for negative, emotionally arousing compared to neutral information. We tested two possible mechanisms underlying this impairment, using picture pairs: 1) higher confidence in one's own ability to memorise negative information may cause participants to under-study negative pairs; 2) better interactive imagery for neutral pairs could facilitate associative memory for neutral pairs more than for negative pairs. Tested with associative recognition, we replicated the impairment of associative memory for negative pairs. We also replicated the result that confidence in future memory (judgments of learning) was higher for negative than neutral pairs. Inflated confidence could not explain the impairment of associative recognition memory: Judgements of learning were positively correlated with associative memory success for both negative and neutral pairs. However, neutral pairs were rated higher in their conduciveness to interactive imagery than negative pairs, and this difference in interactive imagery showed a robust relationship to the associative memory difference. Thus, associative memory reductions for negative information are not due to differences in encoding effort. Instead, interactive imagery may be less effective for encoding of negative than neutral pairs.

Download full-text PDF

Source
http://dx.doi.org/10.1080/02699931.2019.1602028DOI Listing

Publication Analysis

Top Keywords

associative memory
24
neutral pairs
24
interactive imagery
20
negative pairs
16
negative neutral
12
negative
11
pairs
11
memory
9
memory negative
8
associative recognition
8

Similar Publications

Audiovisual associative memory and audiovisual integration involve common behavioral processing components and significantly overlap in their neural mechanisms. This suggests that training on audiovisual associative memory may have the potential to improve audiovisual integration. The current study tested this hypothesis by applying a 2 (group: audiovisual training group, unimodal control group) * 2 (time: pretest, posttest) design.

View Article and Find Full Text PDF

Cognitive mechanisms of aversive prediction error-induced memory enhancements.

J Exp Psychol Gen

January 2025

Department of Cognitive Psychology, Institute of Psychology, Universitat Hamburg.

While prediction errors (PEs) have long been recognized as critical in associative learning, emerging evidence indicates their significant role in episodic memory formation. This series of four experiments sought to elucidate the cognitive mechanisms underlying the enhancing effects of PEs related to aversive events on memory for surrounding neutral events. Specifically, we aimed to determine whether these PE effects are specific to predictive stimuli preceding the PE or if PEs create a transient window of enhanced, unselective memory formation.

View Article and Find Full Text PDF

Memory consolidation from a reinforcement learning perspective.

Front Comput Neurosci

January 2025

Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Republic of Korea.

Memory consolidation refers to the process of converting temporary memories into long-lasting ones. It is widely accepted that new experiences are initially stored in the hippocampus as rapid associative memories, which then undergo a consolidation process to establish more permanent traces in other regions of the brain. Over the past two decades, studies in humans and animals have demonstrated that the hippocampus is crucial not only for memory but also for imagination and future planning, with the CA3 region playing a pivotal role in generating novel activity patterns.

View Article and Find Full Text PDF

Humans excel at applying learned behavior to unlearned situations. A crucial component of this generalization behavior is our ability to compose/decompose a whole into reusable parts, an attribute known as compositionality. One of the fundamental questions in robotics concerns this characteristic: How can linguistic compositionality be developed concomitantly with sensorimotor skills through associative learning, particularly when individuals only learn partial linguistic compositions and their corresponding sensorimotor patterns? To address this question, we propose a brain-inspired neural network model that integrates vision, proprioception, and language into a framework of predictive coding and active inference on the basis of the free-energy principle.

View Article and Find Full Text PDF

Transitive inference, the ability to establish hierarchical relationships between stimuli, is typically tested by training with premise pairs (e.g., A + B-, B + C-, C + D-, D + E-), which establishes a stimulus hierarchy (A > B > C > D > E).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!