Biofuel cells (BFCs) based on anodic oxidation and cathodic oxygen reduction represent an attractive alternative to self-powered devices. A glucose/oxygen BFC is described for monitoring glucose. It is making use of a piece of paper carrying a glucose oxidase (GOx) based bioanode, and a bilirubin oxidase (BilOx) based biocathode. The performance of the BFC is affected by the generation of HO, a byproduct of enzymatic glucose oxidation. Therefore, the removal of HO is a crucial step in terms of BFC performance and stability. In addition, direct, unambiguous visual read-out is an ideal way to provide quantitative information. The colorimetric readout system described here is based on the consumption of undesired HO and to convert the extent of energy generation into recognizable variations in color. As the HO travels along the hydrophilic channel by capillary action, the formation of red gold nanoparticles from AuCl leads to the appearance of a red bar that provides distance-based information that can be read visually. The multiply readable information (maximum power density of BFC or visible distance) provides further choices for quantification. It also enhances reliability. The self-powered system based on the BFC exhibits excellent performance. Glucose can be determined by this method in the 1 to 50 mM concentration range. Graphical abstract Schematic presentation of a paper-supported biofuel cell equipped with a visual distance readout to display the level of energy generation in biofuel cells, and its application in sensing of glucose.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-019-3374-0DOI Listing

Publication Analysis

Top Keywords

energy generation
12
biofuel cells
12
visual distance
8
distance readout
8
readout display
8
display level
8
level energy
8
sensing glucose
8
glucose
6
based
5

Similar Publications

Unraveling the Trade-Off Effect of Pyrogenic Carbons Between Biopseudocapacitors and Bioconductors During Anaerobic Methanogenesis.

Environ Sci Technol

January 2025

State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.

Pyrogenic carbons (PCs), with varying structures depending on the materials and thermal treatment conditions, have been extensively used to enhance anaerobic digestion by mediating electron transfer. However, the underlying mechanism has yet to be explored. Herein, the redirection and enhancement of the direct interspecies electron transfer (DIET) pathway were evidenced, along with the upregulated electrochemical properties and structural proteins in the methanogenic consortia.

View Article and Find Full Text PDF

Correlated spin-wave generation and domain-wall oscillation in a topologically textured magnetic film.

Nat Mater

January 2025

Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA.

Spin waves, or magnons, are essential for next-generation energy-efficient spintronics and magnonics. Yet, visualizing spin-wave dynamics at nanoscale and microwave frequencies remains a formidable challenge due to the lack of spin-sensitive, time-resolved microscopy. Here we report a breakthrough in imaging dipole-exchange spin waves in a ferromagnetic film owing to the development of laser-free ultrafast Lorentz electron microscopy, which is equipped with a microwave-mediated electron pulser for high spatiotemporal resolution.

View Article and Find Full Text PDF

Reliable prediction of photovoltaic power generation is key to the efficient management of energy systems in response to the inherent uncertainty of renewable energy sources. Despite advances in weather forecasting, photovoltaic power prediction accuracy remains a challenge. This study presents a novel approach that combines genetic algorithms and dynamic neural network structure refinement to optimize photovoltaic prediction.

View Article and Find Full Text PDF

Lymphangiogenesis is vital for tissue fluid homeostasis, immune function, and lipid absorption. Abnormal lymphangiogenesis has been implicated in several diseases such as cancers, inflammatory, and autoimmune diseases. In this study, we elucidate the role of tsRNA-0032 in lymphangiogenesis and its molecular mechanism.

View Article and Find Full Text PDF

Background-free luminescent and chromatic assay for strong visual detection of creatinine.

Talanta

January 2025

Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China. Electronic address:

Creatinine is an essential biomarker for the clinical diagnosis and treatment of renal insufficiency. Although fluorescent methods are powerful tools for creatinine detection, almost all reported fluorescent probes rely on short-wavelength excitation and a single fluorescent signal, making them susceptible to environmental and operational conditions. In this study, a near-infrared excited, highly sensitive, and multi-output signal sensing system was established using upconversion nanoparticles and 3,5-dinitrobenzoic acid (DNBA) for synergistic luminescent and colorimetric assay for strong visual detection of creatinine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!