Photodegradation is an important non-biodegradation process of pesticide degradation in aquatic environments. In this study, the effect of different forms of nitrogen on the photodegradation kinetics of penoxsulam was investigated. The photodegradation of penoxsulam was accelerated by NO and NO but was not affected by NH. Ultra-high-performance liquid chromatography coupled with time-of-flight mass spectrometry was used to separate and identify the transformation products (TPs)converted by photodegradation of penoxsulam in an aqueous solution under UV-Vis (290-800 nm) irradiation. Seven major transformation products were identified based on mass spectral data. The structure was determined by elemental composition calculations, comparison of structural analogs, and existing literature. The main pathways of photodegradation were found to be sulfonamide bond cleavage, rearrangement, triazole ring cleavage, and hydroxylation. These findings are critical to elucidate the environmental fate of penoxsulam in aquatic ecosystems and provide a basis for further environmental risk assessment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00128-019-02612-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!