Locillomycins are cyclic lipononapeptides assembled by a nonlinear hexamodular NRPS and have strong antibacterial activity. In this study, we genetically engineered Bacillus velezensis FZB42 as a surrogate host for the heterologous expression of the loc gene cluster for locillomycins. The fosmid N13 containing whole loc gene cluster was screened from the B. velezensis 916 genomic library. Subsequently, a spectinomycin resistance cassette, and the cassette fused with an IPTG inducible promoter Pspac, was introduced in the fosmid N13 using λ Red recombination system, respectively. The resulting fosmids, designated N13+Spec and N13+PSSpec, were used for the transformation of B. velezensis FZB42 to obtain derivative strains FZBNPLOC and FZBPSLOC. RT-PCR and qRT-PCR results revealed the efficient heterologous expression of the loc gene cluster in both derivative strains. Particularly, there was positive correlation between the derivative FZBPSLOC strain and the enhanced production of locillomycins upon addition of the inducer IPTG with the highest production of locillomycins at 15-fold more than that of B. velezensis 916. This overproduction of locillomycins was also related to the enhancement of antibacterial activity against methicillin-resistant Staphylococcus aureus, and exhibited moderate changes in its hemolytic activity. Together our findings demonstrate that the nonlinear hexamodular NRPS, encoded by the loc gene cluster from B. velezensis 916, is sufficient for the biosynthesis of cyclic lipononapeptide locillomycins in the surrogate host B. velezensis FZB42. Moreover, the FZBPSLOC strain will also be useful for further development of novel locillomycins derivatives with improved antibacterial activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-019-09784-1 | DOI Listing |
Genes (Basel)
December 2024
National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
Background/objectives: has recently received increased attention as a potential biological agent because of its broad-spectrum antagonistic capacity against harmful bacteria and fungi. This study aims to thoroughly analyze the genomic characteristics of BRI3, thereby providing theoretical groundwork for the agronomic utilization of this strain.
Methods: In this work, we evaluated the beneficial traits of the newly isolated strain BRI3 via in vitro experiments, whole-genome sequencing, functional annotation, and comparative genomic analysis.
Appl Environ Microbiol
December 2024
Institute of Environmental Sciences, Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University, Rehovot, Israel.
Antibiotic secretion plays a pivotal role in bacterial interference competition; yet, the impact of environmental hydration conditions on such competition is not well understood. Here, we investigate how hydration conditions affect interference competition among bacteria, studying the interactions between the antibiotic-producing FZB42 and two bacterial strains susceptible to its antibiotics: 85-10 and DC3000. Our results show that wet-dry cycles significantly modify the response of the susceptible bacteria to both the supernatant and cells of the antibiotic-producing bacteria, compared to constantly wet conditions.
View Article and Find Full Text PDFISME J
January 2024
Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Science and Technology, Hubei Engineering University, Xiaogan, Hubei 432000, China.
Front Microbiol
August 2024
Laboratory of Molecular Phytopathology, Horticultural and Plant Protection Department, Inner Mongolia Agricultural University, Hohhot, China.
Front Microbiol
June 2024
Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University Haikou, Haikou, China.
HAB-5 is a plant growth-promoting rhizobacterium (PGPR) that exhibits several biotechnological traits, such as enhancing plant growth, colonizing the rhizosphere, and engaging in biocontrol activities. In this study, we conducted whole-genome sequencing of HAB-5 using the single-molecule real-time (SMRT) sequencing platform by Pacific Biosciences (PacBio; United States), which has a circular chromosome with a total length of 4,083,597 bp and a G + C content of 44.21%.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!