The expanding CRISPR-Cas9 technology is an easily accessible, programmable, and precise gene-editing tool with numerous applications, most notably in biomedical research. Together with advancements in genome and transcriptome sequencing in the era of metadata, genomic engineering with CRISPR-Cas9 meets the developmental requirements of precision medicine, and clinical tests using CRISPR-Cas9 are now possible. This review summarizes developments and established preclinical applications of CRISPR-Cas9 technology, along with its current challenges, and highlights future applications in translational research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6447755 | PMC |
http://dx.doi.org/10.1016/j.omtm.2019.02.008 | DOI Listing |
Plant Cell Rep
January 2025
Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea.
Viral vector-mediated gene editing is enhanced for cultivated tomato under low temperature conditions, enabling higher mutation rates, heritable, and virus-free gene editing for efficient breeding. The CRISPR/Cas system, a versatile gene-editing tool, has revolutionized plant breeding by enabling precise genetic modifications. The development of robust and efficient genome-editing tools for crops is crucial for their application in plant breeding.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Department of Anaesthesia Technology, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University (KKU), Abha, Saudi Arabia.
Neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) are characterized by the progressive degeneration of neuronal structure and function, leading to severe cognitive and motor impairments. These conditions present significant challenges to healthcare systems, and traditional treatments often fail to account for genetic variability among patients, resulting in inconsistent therapeutic outcomes. Pharmacogenomics aims to tailor medical treatments based on an individual's genetic profile, thereby improving therapeutic efficacy and reducing adverse effects.
View Article and Find Full Text PDFBioinform Adv
December 2024
Digital Technologies Research Center, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada.
Motivation: Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 system is a ground-breaking genome editing tool, which has revolutionized cell and gene therapies. One of the essential components involved in this system that ensures its success is the design of an optimal single-guide RNA (sgRNA) with high on-target cleavage efficiency and low off-target effects. This is challenging as many conditions need to be considered, and empirically testing every design is time-consuming and costly.
View Article and Find Full Text PDFACS Omega
December 2024
Institute of Analytical Sciences and Physico-Chemistry for Environment and Materials (IPREM), E2S UPPA, CNRS, Université de Pau et des Pays de l'Adour, University Avenue, 64 012 Pau, France.
The Mediterranean diet is a well-known dietary pattern that has gained considerable popularity worldwide for its ability to prevent the progression of nonalcoholic fatty liver disease. This is largely attributed to the use of virgin olive oil as the primary source of fat, which contains a substantial amount of squalene, a natural antioxidant. In order to enhance the delivery of squalene and amplify its effects due to its highly hydrophobic nature, herein, squalene has been incorporated into chitosan nanoparticles.
View Article and Find Full Text PDFInsect Biochem Mol Biol
January 2025
College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, China; Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control, Shenyang 110866, Liaoning, China. Electronic address:
The sterile insect technique (SIT) is a well-established and environmentally benign method for population control. Identifying genes that regulate insect fertility while preserving growth and development is crucial for implementing a novel SIT-based pest management approach utilizing CRISPR/Cas9 to target these genes for genetic manipulation. Tektin (TEKT), an essential alpha-helical protein pivotal in sperm formation due to its role in cilia and flagella assembly, has garnered attention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!