Piezo type mechanosensitive ion channel component 2 (PIEZO2) is a mechanically activated ion channel. Mutations in PIEZO2 may cause distal arthrogryposis 3 (DA3)/Gordon syndrome (GS), DA5, Marden-Walker syndrome (MWS) and associated diseases. To date, no systematic study has analyzed and compared the influence of different gene mutations of PIEZO2 on its transcription, as well as translation and protein function. Therefore, the objective of the present study was to systematically assess the effect of different pathological mutations of PIEZO2 on transcription, translation, as well as protein structure and function that contribute to GS/DA3, DA5, MWS and associated diseases based on a bioinformatics analysis using the Pubmed, ClinVar, RaptorX and Phyre2 online databases. The results indicated the presence of 27 pathological mutations in PIEZO2, including dominant and recessive mutations. Dominant mutations were mainly located in the C-terminal region, whereas recessive mutations were mainly localized in the N-terminal region, and most reported mutation sites exhibited high evolutionary conservation among different species. Loss-of-function mutations result in nonsense-mediated transcript decay or premature termination codons, consequently leading to a lack of PIEZO2 protein, whereas gain-of-function mutations may lead to increased PIEZO2-associated channel activity. The bioinformatics analysis results also indicated that the p.Ala1486Pro, p.Thr2221Ile and p.Glu2727del mutations modify the secondary structure of the PIEZO2 protein, while p.Thr2221Ile, p.Arg2718Leu and p.Arg2718Pro mutations reduce the solvent accessibility of PIEZO2 protein. Furthermore, the p.Ala1486Pro, p.Thr2221Ile, p.Ser2223Leu, p.Thr2356Met, p.Arg2686His, p.Arg2718Leu, p.Arg2718Pro and p.Glu2727del mutations affect the transmembrane region. These changes of PIEZO2 may contribute to a gain-of-function of PIEZO2. Variable clinical phenotypes were present between and among the gain- and loss-of-function mutations linked with PIEZO2-associated disease, which implied that different mutations in PIEZO2 have different pathophysiological effects. Of course, further functional studies to explore the precise structure and function of PIEZO2 are necessary and may offer useful clues for the prevention and treatment of associated diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6447819 | PMC |
http://dx.doi.org/10.3892/etm.2019.7381 | DOI Listing |
Brain
October 2024
Molecular Physiology of Somatic Sensation Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 10409, Germany.
PIEZO2 is a trimeric mechanically-gated ion channel expressed by most sensory neurons in the dorsal root ganglia. Mechanosensitive PIEZO2 channels are also genetically required for normal touch sensation in both mice and humans. We previously showed that PIEZO2 channels are also strongly modulated by membrane voltage.
View Article and Find Full Text PDFDevelopment
February 2024
National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
The mechanosensitive PIEZO channel family has been linked to over 26 disorders and diseases. Although progress has been made in understanding these channels at the structural and functional levels, the underlying mechanisms of PIEZO-associated diseases remain elusive. In this study, we engineered four PIEZO-based disease models using CRISPR/Cas9 gene editing.
View Article and Find Full Text PDFSci Rep
January 2024
Department of Traditional Chinese Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200434, People's Republic of China.
Gastric cancer (GC) is one of the most prevalent malignant tumors of the gastrointestinal system in the globe. The effect of PIEZO2 on the immune function and pathological features of gastric cancer remains to be explored. The Online database of cancer genes and GSE54129 have been used to analyze the clinical characteristics of PIEZO2 expression.
View Article and Find Full Text PDFMicroPubl Biol
December 2023
School of Biological Sciences, Illinois State University, Normal, Illinois, United States.
The discovery in 2010 of the PIEZO family of mechanoreceptors revolutionized our understanding of the role of proprioceptive feedback in mammalian physiology. Much remains to be elucidated. This study looks at the role this receptor plays in normal locomotion.
View Article and Find Full Text PDFInt J Mol Sci
September 2023
Victor Chang Cardiac Research Institute, Lowy Packer Building, Darlinghurst, NSW 2010, Australia.
PIEZO channels PIEZO1 and PIEZO2 are the newly identified mechanosensitive, non-selective cation channels permeable to Ca. In higher vertebrates, PIEZO1 is expressed ubiquitously in most tissues and cells while PIEZO2 is expressed more specifically in the peripheral sensory neurons. PIEZO channels contribute to a wide range of biological behaviors and developmental processes, therefore driving significant attention in the effort to understand their molecular properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!