Metabolites are the final products of cellular regulation processes, their level is the ultimate response of biological systems to environmental and genetic changes. Therefore, the identification of key metabolites is required for the diagnosis and therapy of diseases. In this study, atherosclerosis-related gene expression profile information was extracted from ArrayExpress database (GEOD-57691), and analyzed with limma package. Furthermore, we constructed an intricate multi-omics network involved in genes, phenotypes, metabolites and their associations. To identify the prioritization of atherosclerosis-related metabolites, the relation score of each metabolite in the composite network was computed with the random walk with restart (RWR) method. The top 50 metabolites and top 100 genes were chosen based on the score in the weighted composite network. Consequently, several key metabolites that were ranked in the top 5 of relation score or degree greater than 70 were confirmed. Particularly, metabolites Tretinoin and Estraderm not only have high relation scores, but also contain more degrees. Moreover, we obtained 24 co-expression genes that may be regarded as the targets of atherosclerosis therapy. Therefore, identification of metabolite prioritizations by the composite network integrated the information of genes, phenotypes and metabolites may be available to diagnose atherosclerosis, and can provide the potential therapeutic strategies for atherosclerosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6447794 | PMC |
http://dx.doi.org/10.3892/etm.2019.7351 | DOI Listing |
Plant Foods Hum Nutr
January 2025
Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
Sea buckthorn is a model of medicine and food homology, but the chemical composition and mechanism of anti-inflammatory effects are limited. In this study, the key components and mechanisms of the anti-inflammatory effects of sea buckthorn were identified based on UPLC-Q-TOF-MS, network pharmacology, molecular docking, molecular dynamics and RAW264.7 cells.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of General Surgery, Tianjin Fifth Central Hospital, No. 41 Zhejiang Road, Binhai New Area, Tianjin, 300450, China.
Gastric cancer (GC), a prevalent malignancy worldwide, encompasses a multitude of biological processes in its progression. Recently, ferroptosis, a novel mode of cell demise, has become a focal point in cancer research. The microenvironment of gastric cancer is composed of diverse cell populations, yet the specific gene expression profiles and their association with ferroptosis are not well understood.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
Fracture healing is a complex process during which the bone restores its structural and mechanical integrity. Collagen networks and minerals are the fundamental components to rebuild the bone matrix in callus. It has been recognized that bone quality could be impaired during aging.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
Achieving microecological balance is a complex environmental challenge. This is because the equilibrium of microecological systems necessitates both the eradication of harmful microorganisms and preservation of the beneficial ones. Conventional materials predominantly target the elimination of pathogenic microorganisms and often neglect the protection of advantageous microbial species.
View Article and Find Full Text PDFMater Horiz
January 2025
Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China.
Conductive hydrogels with stable sensing performance are highly required in soft electronic devices. However, these hydrogels tend to solidify and experience structural damage at sub-zero temperatures, leading to material breakdown and device malfunction. The main challenge lies in effectively designing the micro/nano-structure to enhance mechanical properties and stable strain sensing while preventing freezing in hydrogels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!