β-patchoulene (β-PAE), an active constituent of the neuroprotective effect of β-PAE and the underlying mechanisms on cerebral I/R injury. Following pretreatment with β-PAE (10 mg/kg body weight) by tail intravenous injection for 1 h, Sprague-Dawley rats were subjected to middle cerebral artery occlusion for 2 h and reperfusion for 24 h. The results indicated that pretreatment with β-PAE could diminish the infarct volume, decrease the brain water content, reduce the neurological deficit score and restore the mitochondrial membrane potential, compared with the untreated I/R injury group. Furthermore, cell apoptosis was markedly suppressed by β-PAE, and this effect was associated with the decreased apoptosis regulator BAX/apoptosis regulator Bcl-2 expression ratio and caspase-3 activity. In addition, β-PAE significantly inhibited the release of proinflammatory factors, including tumor necrosis factor-α, interleukin (IL)-1β and IL-6. Superoxide generation and malondialdehyde levels were reduced while the levels of glutathione peroxidase and superoxide dismutase were elevated following treatment with β-PAE, indicating the antioxidative role of β-PAE in cerebral I/R injury. Furthermore, the Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway was inhibited by β-PAE, as demonstrated by the decreased TLR4 expression and nuclear translocation of p65, and increased IκBα level. Taken together, the results suggested that β-PAE may exhibit a neuroprotective effect on cerebral I/R injury in rats through inactivating the TLR4/NF-κB signaling pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6447785PMC
http://dx.doi.org/10.3892/etm.2019.7374DOI Listing

Publication Analysis

Top Keywords

i/r injury
16
signaling pathway
12
cerebral i/r
12
β-pae
10
tlr4/nf-κb signaling
8
pretreatment β-pae
8
injury
5
β-patchoulene cerebral
4
cerebral ischemia-reperfusion
4
ischemia-reperfusion injury
4

Similar Publications

DNA2, a multifunctional enzyme with structure-specific nuclease, 5 -to-3 helicase, and DNA-dependent ATPase activities, plays a pivotal role in the cellular response to DNA damage. However, its involvement in cerebral ischemia/reperfusion (I/R) injury remains to be elucidated. This study investigated the involvement of DNA2 in cerebral I/R injury using conditional knockout (cKO) mice ( -Cre) subjected to middle cerebral artery occlusion (MCAO), an established model of cerebral I/R.

View Article and Find Full Text PDF

The mitochondria as a potential therapeutic target in cerebral I/R injury.

Front Neurosci

January 2025

Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China.

Ischemic stroke is a major cause of mortality and disability worldwide. Among patients with ischemic stroke, the primary treatment goal is to reduce acute cerebral ischemic injury and limit the infarct size in a timely manner by ensuring effective cerebral reperfusion through the administration of either intravenous thrombolysis or endovascular therapy. However, reperfusion can induce neuronal death, known as cerebral reperfusion injury, for which effective therapies are lacking.

View Article and Find Full Text PDF

Background And Objective: Hepatic ischemia reperfusion injury (HIRI) is a common complication closely related to the prognosis of liver surgery, and effective treatment methods are still unavailable. SRT1720 has the characteristics of multifunction and multitarget which may cope with the multidirectional complex pathological process caused by HIRI. The present study aimed to explore the potential mechanism of SRT1720 in HIRI through a combination of network pharmacology, in vitro experiments and in vivo models.

View Article and Find Full Text PDF

Geraniol modulates inflammatory and antioxidant pathways to mitigate intestinal ischemia-reperfusion injury in male rats.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.

Intestinal ischemia-reperfusion injury (IIR/I) significantly increases morbidity and mortality. This study examines the therapeutic effects of geraniol (GNL), which is noted for its anti-inflammatory and antioxidant properties, on intestinal I/R injury in rats. Forty-nine male Wistar-Albino rats were divided into seven groups.

View Article and Find Full Text PDF

Single-Cell Insights Into Cellular Response in Abdominal Aortic Occlusion-Induced Hippocampal Injury.

CNS Neurosci Ther

January 2025

Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing, China.

Objective: Ischemia-reperfusion of the abdominal aorta often results in damage to distant organs, such as the heart and brain. This cellular heterogeneity within affected tissues complicates the roles of specific cell subsets in abdominal aorta occlusion model (AAO) injury. However, cell type-specific molecular pathology in the hippocampus after ischemia is poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!