Three-dimensional microengineered models of human cardiac diseases.

J Biol Eng

1School of Biological and Health Systems Engineering (SBHSE), Arizona State University, 501 E Tyler Mall Building ECG, Suite 334, Tempe, AZ 85287-9709 USA.

Published: April 2019

In vitro three-dimensional (3D) microengineered tissue models have been the recent focus of pathophysiological studies, particularly in the field of cardiovascular research. These models, as classified by 3D biomimetic tissues within micrometer-scale platforms, enable precise environmental control on the molecular- and cellular-levels to elucidate biological mechanisms of disease progression and enhance efficacy of therapeutic research. Microengineered models also incorporate directed stem cell differentiation and genome modification techniques that warrant derivation of patient-specific and genetically-edited human cardiac cells for precise recapitulation of diseased tissues. Additionally, integration of added functionalities and/or structures into these models serves to enhance the capability to further extract disease-specific phenotypic, genotypic, and electrophysiological information. This review highlights the recent progress in the development of in vitro 3D microengineered models for study of cardiac-related diseases (denoted as CDs). We will primarily provide a brief overview on currently available 2D assays and animal models for studying of CDs. We will further expand our discussion towards currently available 3D microengineered cardiac tissue models and their implementation for study of specific disease conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6448321PMC
http://dx.doi.org/10.1186/s13036-019-0155-6DOI Listing

Publication Analysis

Top Keywords

microengineered models
12
three-dimensional microengineered
8
models
8
human cardiac
8
cds will
8
models human
4
cardiac diseases
4
diseases vitro
4
vitro three-dimensional
4
microengineered
4

Similar Publications

The aim of this work is to incorporate lanthanide-cored upconversion nanoparticles (UCNP) into the surface of microengineered biomedical implants to create a spatially controlled and optically releasable model drug delivery device in an integrated fashion. Our approach enables silicone-based microelectrocorticography (ECoG) implants holding platinum/iridium recording sites to serve as a stable host of UCNPs. Nanoparticles excitable in the near-infrared (lower energy) regime and emitting visible (higher energy) light are utilized in a study.

View Article and Find Full Text PDF

Self-organization of the hematopoietic vascular niche and emergent innate immunity on a chip.

Cell Stem Cell

December 2024

Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Vivodyne Inc., Philadelphia, PA 19104, USA; Center for Innovation & Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA. Electronic address:

Here, we present a bioengineering approach to emulate the human bone marrow in vitro. Our developmentally inspired method uses self-organization of human hematopoietic stem and progenitor cells and vascular endothelial cells cultured in a three-dimensional microphysiological system to create vascularized, perfusable tissue constructs that resemble the hematopoietic vascular niche of the human marrow. The microengineered niche is capable of multilineage hematopoiesis and can generate functionally mature human myeloid cells that can intravasate into perfused blood vessels, providing a means to model the mobilization of innate immune cells from the marrow.

View Article and Find Full Text PDF

The high mortality associated with certain cancers can be attributed to the invasive nature of the tumor cells. Yet, the complexity of studying invasion hinders our understanding of how the tumor spreads. This work presents a microengineered three-dimensional (3D) model for studying cancer cell invasion and interaction with endothelial cells.

View Article and Find Full Text PDF

Non-physiological levels of oxygen and nutrients within the tumors result in heterogeneous cell populations that exhibit distinct necrotic, hypoxic, and proliferative zones. Among these zonal cellular properties, metabolic rates strongly affect the overall growth and invasion of tumors. Here, we report on a hybrid discrete-continuum (HDC) mathematical framework that uses metabolic data from a biomimetic two-dimensional (2D) in-vitro cancer model to predict three-dimensional (3D) behaviour of in-vitro human glioblastoma (hGB).

View Article and Find Full Text PDF

Three-dimensional (3D) bioprinting using photocrosslinkable hydrogels has gained considerable attention due to its versatility in various applications, including tissue engineering and drug delivery. Egg White (EW) is an organic biomaterial with excellent potential in tissue engineering. It provides abundant proteins, along with biocompatibility, bioactivity, adjustable mechanical properties, and intrinsic antiviral and antibacterial features.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!