Non-digestible oligosaccharides scFOS/lcFOS facilitate safe subcutaneous immunotherapy for peanut allergy.

Clin Mol Allergy

1Department of Immunotoxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 104, 3508 TD Utrecht, The Netherlands.

Published: April 2019

Background: Improving the safety of subcutaneous immunotherapy (SCIT) for food allergy is necessary to reduce side effects and achieve long-term tolerance. We determined the effect of dietary supplementation with 1% non-digestible short- and long-chain fructo-oligosaccharides (scFOS/lcFOS) on safety and efficacy of SCIT using a peanut allergy mouse model.

Methods: After sensitization, mice received a scFOS/lcFOS or control diet for the rest of the study. To study safety of SCIT, mice were dosed with a single subcutaneous injection of peanut extract (PE) or PBS. To study efficacy, mice were dosed subcutaneously (SCIT, 3 times/week) with PE or PBS for 3 weeks. Hereafter, acute allergic skin responses, anaphylactic shock symptoms and body temperature were assessed. To study the mechanism in vitro, the human IgE receptor (FcεRI)-transfected rat mast cell (RBL) line was sensitized with an oligoclonal pool of chimeric human (chu)IgE antibodies against bovine β-lactoglobulin (BLG) and incubated with the oligosaccharides before exposure to BLG to assess direct the effect on degranulation.

Results: scFOS/lcFOS reduced anaphylaxis caused by a single PE SCIT dose. scFOS/lcFOS alone also reduced the acute allergic skin response. Moreover, scFOS/lcFOS supplementation resulted in lower MMCP-1 levels in serum after PE SCIT dose compared to control diet, while antibody levels were not affected by the diet. In vitro incubation with scFOS/lcFOS at 0.5% suppressed the degranulation of IgE-sensitized RBL cells. However, dietary supplementation with scFOS/lcFOS did not improve the efficacy of SCIT.

Conclusions: We show that scFOS/lcFOS diet improves the safety of SCIT, as evidenced by lower anaphylactic responses without compromising the efficacy in a mouse model for peanut allergy. This effect is likely to result from the suppression of mast cell effector function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6448225PMC
http://dx.doi.org/10.1186/s12948-019-0111-5DOI Listing

Publication Analysis

Top Keywords

peanut allergy
12
scfos/lcfos
9
subcutaneous immunotherapy
8
dietary supplementation
8
control diet
8
safety scit
8
mice dosed
8
acute allergic
8
allergic skin
8
mast cell
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!