Bacterial lipoproteins are globular proteins anchored to the extracytoplasmic surfaces of cell membranes through lipidation at a conserved N-terminal cysteine. Lipoproteins contribute to an array of important cellular functions for bacteria, as well as being a focal point for innate immune system recognition through binding to Toll-like receptor 2 (TLR2) heterodimer complexes. Although lipoproteins are conserved among nearly all classes of bacteria, the presence and type of α-amino-linked acyl chain are highly variable and even strain specific within a given bacterial species. The reason for lyso-lipoprotein formation and -acylation variability in general is presently not fully understood. In , lipoproteins are anchored by an -acyl--monoacyl-glyceryl cysteine (lyso form) moiety installed by a chromosomally encoded lipoprotein intramolecular transacylase (Lit). Here, we describe a mobile genetic element common to environmental isolates of and spp. encoding a functional Lit ortholog (Lit2) that is cotranscribed with several well-established copper resistance determinants. Expression of Lit2 is tightly regulated, and induction by copper converts lipoproteins from the diacylglycerol-modified form characteristic of type strains to the α-amino-modified lyso form observed in Conversion to the lyso form through either copper addition to media or constitutive expression of decreases TLR2 recognition when using an activated NF-κB secreted embryonic alkaline phosphatase reporter assay. While lyso formation significantly diminishes TLR2 recognition, lyso-modified lipoprotein is still predominantly recognized by the TLR2/TLR6 heterodimer. The induction of lipoprotein N-terminal remodeling in response to environmental copper in Gram-positive bacteria suggests a more general role in bacterial cell envelope physiology. N-terminal modification by lyso formation, in particular, simultaneously modulates the TLR2 response in direct comparison to their diacylglycerol-modified precursors. Thus, use of copper as a frontline antimicrobial control agent and ensuing selection raises the potential of diminished innate immune sensing and enhanced bacterial virulence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6560142 | PMC |
http://dx.doi.org/10.1128/JB.00195-19 | DOI Listing |
Int J Mol Sci
January 2025
Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy.
Anderson-Fabry (or Fabry) disease is a rare lysosomal storage disorder caused by a functional deficiency of the enzyme alpha-galactosidase A. The partial or total defect of this lysosomal enzyme, which is caused by variants in the gene, leads to the accumulation of glycosphingolipids, mainly globotriaosylceramide in the lysosomes of different cell types. The clinical presentation of Fabry disease is multisystemic and can vary depending on the specific genetic variants associated with the disease.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, McGovern Medical School, Houston, TX, USA.
Phospholipid translocation occurs ubiquitously in biological membranes and primarily is protein catalyzed. Lipid flippases mediate the net translocation of specific phospholipids from one leaflet of a membrane to the other. In the inner (cytoplasmic) membrane (IM) of Gram-negative bacteria, lysophospholipid translocase (LplT) and cytosolic bifunctional acyl-acyl carrier protein (ACP) synthetase/2-acylglycerolphosphoethanolamine acyltransferase (Aas) form a glycerophospholipid regeneration system, which is capable of facilitating rapid retrograde translocation of lyso forms of phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and cardiolipin (CL) but not exogenous (host-derived) phosphatidylcholine (PC) across the IM of Gram-negative diderm (two-membraned) bacteria in consequential order lyso-PE = lyso-PG > > lysophosphatidic acid (lyso-PA) >> lyso-PC.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
Fabry disease is a rare X-linked lysosomal storage disorder caused by mutations in the galactosidase alpha () gene, resulting in the accumulation of globotriaosylceramide (Gb3) and its deacetylated form, globotriaosylsphingosine (Lyso-Gb3) in various tissues and fluids throughout the body. This pathological accumulation triggers a cascade of processes involving immune dysregulation and complement system activation. Elevated levels of complement 3a (C3a), C5a, and their precursor C3 are observed in the plasma, serum, and tissues of patients with Fabry disease, correlating with significant endothelial cell abnormalities and vascular dysfunction.
View Article and Find Full Text PDFMol Genet Metab Rep
December 2024
Biosidus S.A.U, Buenos Aires 1254, Argentina.
Fabry disease is a rare X-linked lysosomal condition that leads to the accumulation of glycosphingolipids in various tissues, causing cellular dysfunction, tissue remodeling, progressive fibrosis, and organ failure. The disease results from a deficiency in the human α-galactosidase A enzyme, responsible for breaking down glycosphingolipids like globotriaosylceramide (GL-3 or Gb3) into galactose and dihexose ceramides. In individuals diagnosed with Fabry disease, treatment from 2 years of age onwards typically involves agalsidase beta, the normal recombinant form of the defective enzyme.
View Article and Find Full Text PDFActa Cardiol Sin
September 2024
Division of Cardiology, Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!