Bacterial lipoproteins are globular proteins anchored to the extracytoplasmic surfaces of cell membranes through lipidation at a conserved N-terminal cysteine. Lipoproteins contribute to an array of important cellular functions for bacteria, as well as being a focal point for innate immune system recognition through binding to Toll-like receptor 2 (TLR2) heterodimer complexes. Although lipoproteins are conserved among nearly all classes of bacteria, the presence and type of α-amino-linked acyl chain are highly variable and even strain specific within a given bacterial species. The reason for lyso-lipoprotein formation and -acylation variability in general is presently not fully understood. In , lipoproteins are anchored by an -acyl--monoacyl-glyceryl cysteine (lyso form) moiety installed by a chromosomally encoded lipoprotein intramolecular transacylase (Lit). Here, we describe a mobile genetic element common to environmental isolates of and spp. encoding a functional Lit ortholog (Lit2) that is cotranscribed with several well-established copper resistance determinants. Expression of Lit2 is tightly regulated, and induction by copper converts lipoproteins from the diacylglycerol-modified form characteristic of type strains to the α-amino-modified lyso form observed in Conversion to the lyso form through either copper addition to media or constitutive expression of decreases TLR2 recognition when using an activated NF-κB secreted embryonic alkaline phosphatase reporter assay. While lyso formation significantly diminishes TLR2 recognition, lyso-modified lipoprotein is still predominantly recognized by the TLR2/TLR6 heterodimer. The induction of lipoprotein N-terminal remodeling in response to environmental copper in Gram-positive bacteria suggests a more general role in bacterial cell envelope physiology. N-terminal modification by lyso formation, in particular, simultaneously modulates the TLR2 response in direct comparison to their diacylglycerol-modified precursors. Thus, use of copper as a frontline antimicrobial control agent and ensuing selection raises the potential of diminished innate immune sensing and enhanced bacterial virulence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6560142PMC
http://dx.doi.org/10.1128/JB.00195-19DOI Listing

Publication Analysis

Top Keywords

lyso form
12
lipoprotein intramolecular
8
intramolecular transacylase
8
toll-like receptor
8
innate immune
8
tlr2 recognition
8
lyso formation
8
lipoprotein
5
lipoproteins
5
lyso
5

Similar Publications

Anderson-Fabry (or Fabry) disease is a rare lysosomal storage disorder caused by a functional deficiency of the enzyme alpha-galactosidase A. The partial or total defect of this lysosomal enzyme, which is caused by variants in the gene, leads to the accumulation of glycosphingolipids, mainly globotriaosylceramide in the lysosomes of different cell types. The clinical presentation of Fabry disease is multisystemic and can vary depending on the specific genetic variants associated with the disease.

View Article and Find Full Text PDF

Advanced Method for the In Vivo Measurements of Lysophospholipid Translocation Across the Inner (Cytoplasmic) Membrane of Escherichia coli.

Methods Mol Biol

December 2024

Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, McGovern Medical School, Houston, TX, USA.

Phospholipid translocation occurs ubiquitously in biological membranes and primarily is protein catalyzed. Lipid flippases mediate the net translocation of specific phospholipids from one leaflet of a membrane to the other. In the inner (cytoplasmic) membrane (IM) of Gram-negative bacteria, lysophospholipid translocase (LplT) and cytosolic bifunctional acyl-acyl carrier protein (ACP) synthetase/2-acylglycerolphosphoethanolamine acyltransferase (Aas) form a glycerophospholipid regeneration system, which is capable of facilitating rapid retrograde translocation of lyso forms of phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and cardiolipin (CL) but not exogenous (host-derived) phosphatidylcholine (PC) across the IM of Gram-negative diderm (two-membraned) bacteria in consequential order lyso-PE = lyso-PG > > lysophosphatidic acid (lyso-PA) >> lyso-PC.

View Article and Find Full Text PDF

Fabry disease is a rare X-linked lysosomal storage disorder caused by mutations in the galactosidase alpha () gene, resulting in the accumulation of globotriaosylceramide (Gb3) and its deacetylated form, globotriaosylsphingosine (Lyso-Gb3) in various tissues and fluids throughout the body. This pathological accumulation triggers a cascade of processes involving immune dysregulation and complement system activation. Elevated levels of complement 3a (C3a), C5a, and their precursor C3 are observed in the plasma, serum, and tissues of patients with Fabry disease, correlating with significant endothelial cell abnormalities and vascular dysfunction.

View Article and Find Full Text PDF

Fabry disease is a rare X-linked lysosomal condition that leads to the accumulation of glycosphingolipids in various tissues, causing cellular dysfunction, tissue remodeling, progressive fibrosis, and organ failure. The disease results from a deficiency in the human α-galactosidase A enzyme, responsible for breaking down glycosphingolipids like globotriaosylceramide (GL-3 or Gb3) into galactose and dihexose ceramides. In individuals diagnosed with Fabry disease, treatment from 2 years of age onwards typically involves agalsidase beta, the normal recombinant form of the defective enzyme.

View Article and Find Full Text PDF

2024 Update of the TSOC Expert Consensus of Fabry Disease.

Acta Cardiol Sin

September 2024

Division of Cardiology, Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan.

Article Synopsis
  • Fabry disease (FD) is an X-linked lysosomal storage disorder caused by mutations in the α-galactosidase A gene, leading to harmful buildup of glycosphingolipids in various tissues and classified into classic and late-onset phenotypes.
  • Classic phenotype shows severely reduced enzyme activity, resulting in a progressive disease with multi-organ issues, while late-onset often presents with milder symptoms and mainly affects the heart due to some remaining enzyme activity.
  • Early diagnosis through enzyme testing, imaging, and genotyping is crucial for effective treatment, which includes enzyme replacement therapy and new pharmacological options to prevent irreversible damage and optimize patient care based on genetic and gender considerations.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!