Social Inequalities in Environmental Resources of Green and Blue Spaces: A Review of Evidence in the WHO European Region.

Int J Environ Res Public Health

Institute of Public Health and Nursing Research, Department of Social Epidemiology, University of Bremen 28359 Bremen, Germany.

Published: April 2019

Residential green and blue spaces and their potential health benefits have received increasing attention in the context of environmental health inequalities, because an unequal social distribution of these resources may contribute to inequalities in health outcomes. This systematic review synthesised evidence of environmental inequalities, focusing on availability and accessibility measures of green and blue spaces. Studies in the World Health Organisation (WHO) European Region published between 2010 and 2017 were considered for the review. In total, 14 studies were identified, where most of them ( = 12) analysed inequalities of green spaces. The majority had an ecological study design that mostly applied deprivation indices on the small area level, whereas cross-sectional studies on the individual level mostly applied single social measures. Ecological studies consistently showed that deprived areas had lower green space availability than more affluent areas, whereas mixed associations were found for single social dimensions in cross-sectional studies on the individual level. In order to gain more insights into how various social dimensions are linked to the distribution of environmental resources within the WHO European Region, more studies are needed that apply comparable methods and study designs for analysing social inequalities in environmental resources.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6480666PMC
http://dx.doi.org/10.3390/ijerph16071216DOI Listing

Publication Analysis

Top Keywords

environmental resources
12
green blue
12
blue spaces
12
european region
12
social inequalities
8
inequalities environmental
8
cross-sectional studies
8
studies individual
8
individual level
8
single social
8

Similar Publications

Salicylic acid mitigates the physiological and biochemistry toxicity of fungicide difenoconazole and reduces its accumulation in wheat (Triticum aestivum L.).

Plant Physiol Biochem

January 2025

Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China. Electronic address:

Continuous misuse of difenoconazole (DFZ) results in farmland contamination, posing risks to crops and human health. Salicylic acid (SA) has been shown to enhance plant resistance and reduce pesticide phytotoxicity and accumulation. However, whether SA effectively reduces DFZ phytotoxicity and accumulation and its underlying mechanisms remain poorly understood.

View Article and Find Full Text PDF

Legacy contaminants tied to energy production are a worldwide concern. Coal combustion residues (CCRs) contain high concentrations of potentially toxic trace elements such as arsenic (As), mercury (Hg), and selenium (Se), which can persist for decades after initial contamination. CCR disposal methods, including aquatic settling basins and landfills, can facilitate environmental exposure through intentional and accidental releases.

View Article and Find Full Text PDF

Pleurotus ostreatus is a nutrient-dense edible fungus renowned for its delicate texture, appealing flavor, and numerous potential health benefits. Simultaneous extraction within the framework of food resource processing facilitates the concurrent isolation and analysis of multiple target compounds. In this study, an ethanol/salt aqueous two-phase system (ATPS) was employed to extract polysaccharides (PS) and proteins from P.

View Article and Find Full Text PDF

Exploring drought dynamics has become urgent due to unprecedented climate change. Projections indicate that drought events will become increasingly widespread globally, posing a significant threat to the sustainability of the agricultural sector. This growing challenge has resulted in heightened interest in understanding drought dynamics and their impacts on agriculture.

View Article and Find Full Text PDF

Advances on jarosite residue detoxification and reutilization: a review.

Environ Sci Pollut Res Int

January 2025

Key Laboratory of Solid Waste Treatment and Resource Recycle (SWUST), Ministry of Education, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, China.

Jarosite residues are typical hazardous waste byproducts generated during the iron removal process in hydrometallurgical solutions. The jarosite process is widely used for iron removal in zinc hydrometallurgy; jarosite disposal has become a significant barrier to sustainable development in the industry. During this process, jarosite residues entrain and co-precipitate with heavy metals, which are hazardous but valuable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!