Dynamic C-tracer-based flux analyses of in vivo reaction networks still require a continuous development of advanced quantification methods applying state-of-the-art mass spectrometry platforms. Utilizing alkaline HILIC chromatography, we adapt strategies for a systematic quantification study in non- and C-labeled multicomponent endogenous extracts by LC-QTOF high resolution (HRMS) and LC-QQQ tandem mass spectrometry (MS/MS). Without prior derivatization, a representative cross-section of 17 central carbon and anabolic key intermediates were analyzed with high selectivity and sensitivity under optimized ESI-MS settings. In column detection limits for the absolute quantification range were between 6.8-304.7 (QQQ) and 28.7-881.5 fmol (QTOF) with comparable linearities (3-5 orders of magnitude) and enhanced precision using QQQ-MRM detection. Tailor-made preparations of uniformly (U)C-labeled cultivation extracts for isotope dilution mass spectrometry enabled the accurate quantification in complex sample matrices and extended linearities without effect on method parameters. Furthermore, evaluation of metabolite-specific -to- ratios (ISR) in non-labeled extracts exhibited sufficient methodical spectral accuracies with mean deviations of 3.89 ± 3.54% (QTOF) and 4.01 ± 3.01% (QQQ). Based on the excellent HILIC performance, conformity analysis of time-resolved isotopic enrichments in C-tracer experiments revealed sufficient spectral accuracy for QQQ-SIM detection. However, only QTOF-HRMS ensures determination of the full isotopologue space in complex matrices without mass interferences.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6523712 | PMC |
http://dx.doi.org/10.3390/metabo9040063 | DOI Listing |
Anal Chem
December 2024
Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada.
Mass spectrometry (MS)-based metabolomics often rely on separation techniques when analyzing complex biological specimens to improve method resolution, metabolome coverage, quantitative performance, and/or unknown identification. However, low sample throughput and complicated data preprocessing procedures remain major barriers to affordable metabolomic studies that are scalable to large populations. Herein, we introduce PeakMeister as a new software tool in the R statistical environment to enable standardized processing of serum metabolomic data acquired by multisegment injection-capillary electrophoresis-mass spectrometry (MSI-CE-MS), a high-throughput separation platform (<4 min/sample) which takes advantage of a serial injection format of 13 samples within a single analytical run.
View Article and Find Full Text PDFAnal Chem
December 2024
State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR 999077, China.
Spatial stable isotope tracing metabolic imaging is a cutting-edge technique designed to investigate tissue-specific metabolic functions and heterogeneity. Traditional matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) techniques often struggle with low coverage of low-molecular-weight (LMW) metabolites, which are often crucial for spatial metabolic studies. To address this, we developed a high-coverage spatial isotope tracing metabolic method that incorporates optimized matrix selection, sample preparation protocols, and enhanced post-ionization (MALDI2) techniques.
View Article and Find Full Text PDFAnal Chem
December 2024
Department of Chemistry, Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai 200433, China.
With the aging global population, the incidence of osteoporosis (OP) is increasing, putting more individuals at risk. Since postmenopausal osteoporosis (PMOP) often remains asymptomatic until a fracture occurs, making the early clinical diagnosis of PMOP particularly challenging. In this work, the AuNPs-anchored hierarchical porous ZrO microspheres (Au/HPZOMs) is designed to assist laser desorption/ionization mass spectrometry (LDI-MS) for the requirement of serum metabolic fingerprints of PMOP, postmenopausal osteopenia (PMON), and healthy controls (HC) and realize the early diagnosis and surveillance of PMOP.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
The Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia.
The biochemical makeup of any organism provides insight into key factors regarding its biological functions. These factors can be explored using proteomics, which allows us to obtain a snapshot of the protein content and abundance in an organism, cell type or sub-cellular compartment. Here, we describe proteomic methodologies that can be used to dissect the biochemical mechanism of phytopathogenicity in oomycetes.
View Article and Find Full Text PDFBreast Cancer Res Treat
December 2024
Comprehensive Cancer Center, Helsinki University Hospital, University of Helsinki, PO Box 180, 00290, Helsinki, Finland.
Purpose: This study aimed to analyze changes in serum estradiol (E2) levels during concurrent vaginal estradiol therapy and adjuvant letrozole in postmenopausal breast cancer (BC) patients with vulvovaginal atrophy (VVA). Secondary objectives included assessing the effects of therapy on vaginal atrophy, quality of life (QoL) and menopause-related symptoms.
Methods: 20 postmenopausal patients undergoing adjuvant letrozole therapy and experiencing VVA symptoms were treated with vaginal estradiol for 12 weeks.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!