Genetic Effects of Polymorphisms on Milk Production Traits in Dairy Cattle.

Genes (Basel)

Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China.

Published: April 2019

Our initial RNA sequencing work identified that lipin 1 () was differentially expressed during dry period, early lactation, and peak of lactation in dairy cows, and it was enriched into the fat metabolic Gene Ontology (GO) terms and pathways, thus we considered as the candidate gene for milk production traits. In this study, we detected the polymorphisms of and verified their genetic effects on milk yield and composition in a Chinese Holstein cow population. We found seven SNPs by re-sequencing the entire coding region and partial flanking region of , including one in 5' flanking region, four in exons, and two in 3' flanking region. Of these, four SNPs, c.637T > C, c.708A > G, c.1521C > T, and c.1555A > C, in the exons were predicted to result in the amino acid replacements. With the Haploview 4.2, we found that seven SNPs in formed two haplotype blocks (D' = 0.98-1.00). Single-SNP association analyses showed that SNPs were significantly associated with milk yield, fat yield, fat percentage, or protein yield in the first or second lactation ( = < 0.0001-0.0457), and only g.86049389C > T was strongly associated with protein percentage in both lactations ( = 0.0144 and 0.0237). The haplotype-based association analyses showed that the two haplotype blocks were significantly associated with milk yield, fat yield, protein yield, or protein percentage ( = < 0.0001-0.0383). By quantitative real-time PCR (qRT-PCR), we found that had relatively high expression in mammary gland and liver tissues. Furthermore, we predicted three SNPs, c.637T > C, c.708A > G, and c.1521C > T, using SOPMA software, changing the LPIN1 protein structure that might be potential functional mutations. In summary, we demonstrated the significant genetic effects of on milk production traits, and the identified SNPs could serve as genetic markers for dairy breeding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6523124PMC
http://dx.doi.org/10.3390/genes10040265DOI Listing

Publication Analysis

Top Keywords

genetic effects
12
milk production
12
production traits
12
milk yield
12
flanking region
12
yield fat
12
effects milk
8
snps c637t
8
c637t c708a
8
c708a c1521c
8

Similar Publications

Purpose: To investigate the therapeutic efficacy of BEZ235, a dual PI3K/mTOR inhibitor, in suppressing pathological neovascularization in an oxygen-induced retinopathy (OIR) mouse model and explore the role of cyclin D1 in endothelial cell cycle regulation.

Methods: Single-cell RNA sequencing was performed to analyze gene expression and cell-cycle alterations in retinal endothelial cells under normoxic and OIR conditions. The effects of BEZ235 on human umbilical vein endothelial cells (HUVECs) and human retinal microvascular endothelial cells (HRMECs) were evaluated by assessing cell viability, cell-cycle progression, proliferation, migration, and tube formation.

View Article and Find Full Text PDF

Objectives: Sepsis is a life-threatening medical emergency, with a profound healthcare burden globally. Its pathophysiology is complex, heterogeneous and temporally dynamic, making diagnosis challenging. Medical management is predicated on early diagnosis and timely intervention.

View Article and Find Full Text PDF

Dietary restriction (DR) is widely considered to be one of the most potent approaches to extend healthy lifespan across various species, yet it has become increasingly apparent that DR-mediated longevity is influenced by biological and non-biological factors. We propose that current priorities in the field should include understanding the relative contributions of these factors to elucidate the mechanisms underlying the beneficial effects of DR. Our work conducted in two laboratories represents an attempt to unify DR protocols in Drosophila and to investigate the stochastic effects of DR.

View Article and Find Full Text PDF

From fatty liver to fibrosis: the impact of miRNAs on NAFLD and NASH.

Funct Integr Genomics

January 2025

Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.

Non-alcoholic fatty liver disease (NAFLD) is a disease with various levels varying from fatty liver steatosis to acute steatosis which is non-alcoholic steatohepatitis (NASH), which can develop into hepatic failure, as well as in some conditions it can develop into hepatocellular carcinoma (HCC). In the NAFLD and NASH context, aberrant microRNA (miRNA) expression has a thorough contribution to the incidence and development of these liver disorders by influencing key biological actions, involving lipid metabolism, inflammation, and fibrosis. Dysregulated miRNAs can disrupt the balance between lipid accumulation and clearance, exacerbate inflammatory responses, and promote fibrogenesis, thus advancing the severeness of the disorder from simple steatosis to more complex NASH.

View Article and Find Full Text PDF

The use of cell lines as alternative models for environmental physiology studies opens a new window of possibilities and is becoming an increasingly used tool in marine research to fulfil the 3R's rule. In this study, an embryonic monoclonal stem cell line obtained from a marine teleost (gilthead seabream, Sparus aurata) was employed to assess the effects of photoperiod (light/dark cycles vs constant dark) and light spectrum (white, blue, green, blue/green and red lights) on gene expression and rhythms of cellular markers of proliferation, DNA repair, apoptosis and cellular/oxidative stress by RT-qPCR and cosinor analyses. The results obtained revealed the optimal performance of cells under blue light (LDB), with all the genes analysed showing their highest RNA expression levels and most robust daily variations/rhythms in this condition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!