Magnetic iron oxides such as magnetite and γ-hematite have attracted considerable attention as thermoseeds for hyperthermia treatment because of their ability to generate heat under an alternating magnetic field. Control of the particle size and their combination with biocompatible polymers are expected to be beneficial for optimization of the nanoparticles. These processes can be accomplished through the synthesis of magnetite in gels, as the network structure of the polymer gel can control the grain growth of the magnetite. However, the effect of the cross-linking density of the gels remains unclear. In this study, we synthesized magnetic iron oxides in situ in chitosan hydrogels with different cross-linking densities and examined the crystalline structure and heat generation under alternating magnetic field. The crystalline phase and amount of magnetite were observed to be dependent on the cross-linking density of the gel, and the heat generation of the nanoparticles was governed by their crystalline structure and particle size rather than solely the amount of formed iron oxide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2019.04.004 | DOI Listing |
Polymers (Basel)
December 2024
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
Modified basalt microfiber-reinforced polyurethane elastomer composites were prepared by a semi-prepolymer method with two different silane coupling agents (KH550 and KH560) in this study. Infrared spectroscopy was used to quantify the degree of microphase separation and analyze the formation of hydrogen bonding in polyurethane. The interfacial surface and the morphology of fibers and composites from tensile fracture were examined by a scanning electron microscope.
View Article and Find Full Text PDFMolecules
January 2025
Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania.
The evaluation of chlorhexidine-carrier nanosystems based on iron oxide magnetic nanoparticles (IOMNPs), has gained significant attention in recent years due to the unique properties of the magnetic nanoparticles (NPSs). Chlorhexidine (CHX), a well-established antimicrobial agent, has been widely used in medical applications, including oral hygiene and surgical antisepsis. This study aims to report an in vitro and in ovo toxicological screening of the synthesized CHX-NPS nanosystem, of the carrier matrix (maghemite NPSs) and of the drug to be delivered (CHX solution), by employing two types of cell lines-HaCaT immortalized human keratinocytes and JB6 Cl 41-5a murine epidermal cells.
View Article and Find Full Text PDFJ Inorg Biochem
March 2025
Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
Due to their diverse chemical properties and high ability to interact with biological molecules and cellular processes, transition metal-based compounds have emerged as promising candidates for cancer therapy. Iron complexes are among them, however, there is a gap in the comprehensive analysis of heterometallic iron complexes in the anticancer field. This review aims to fill this gap by summarizing recent progress in the study of Fe(II) and Fe(III) heterobimetallic complexes for anticancer applications and to gather important insights and future perspectives, with special emphasis on their theranostic capabilities.
View Article and Find Full Text PDFSci Total Environ
January 2025
Instituto Geológico y Minero de España (CSIC), Ríos Rosas 23, ES-28003 Madrid, Spain. Electronic address:
Mountain lakes are particularly fragile ecosystems undergoing important ecological and depositional transformations associated with ongoing global change. However, the history of anthropogenic impacts on mountain lakes and their catchments is much longer, in many cases featuring millennia of summer pastoral farming. More recently, the growing demand for raw materials and energy linked to industrialization, particularly accelerated since the 19th century CE, meant a further increase in human impact on mountain areas.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Chemistry, Vaal University of Technology, Vanderbijlpark, South Africa.
Due to incessant contamination of the groundwater system near the dumpsite in southwestern Nigeria Basement Complex, this study seeks to evaluate the impact of the Odogbo dumpsite on the local groundwater system by integrating geophysical and geochemical methodologies. Aeromagnetic data covering the study area was acquired, processed, and enhanced to delineate basement features that could potentially be passing plumes to the groundwater system. Concurrently, geoelectric methods using 2-D dipole-dipole imaging and vertical electrical sounding (VES) were utilized to characterize the vulnerability indices of the lithologies underlying the dumpsite.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!