Passive sampling techniques have been considered robust tools for monitoring freely dissolved concentrations of contaminants in aquatic systems. However, few passive samplers are currently available for the simultaneous sampling of both hydrophilic and hydrophobic chemicals. In this study, we developed a novel passive sampler (a hydrophilic-lipophilic balance sorbent-embedded cellulose acetate membrane (HECAM)) for estimating the time-weighted average (TWA) concentrations of both hydrophilic and hydrophobic organic contaminants in water. In our laboratorial controlled dynamic experiments, the accumulation results of thirty-seven target chemicals (including organophosphorus flame retardants, phenols, estrogens, organophosphorus pesticides, and triazine herbicides) with a wide polarity range (1.44 < log K < 9.49) in the HECAM followed first-order kinetics well, and the passive sampling parameters were estimated successfully. The estimated sampling rates for the target chemicals in the HECAM ranged from 0.14 to 6.90 L d in the laboratory experiment, and the log K (equilibrium partition coefficient between the sampler and water) values ranged from 2.75 to 6.00. The HECAM exhibited high sampling rate for moderately hydrophilic and moderately hydrophobic chemicals. The field validation study in an urban river resulted in the detection of four target chemicals (tris(chloroisopropyl)phosphate, tris(1,3-dichloroisopropyl)phosphate, prometryn, and 4-tert-octylphenol) by the HECAM at estimated TWA concentrations of 10.9-179.5 ng L, which were in agreement with the measured levels found in traditional grab samples by solid-phase extraction. In summary, both the laboratory tests and field deployment showed practicable results for the HECAM passive sampling, which suggests that it is an efficient approach for simultaneous monitoring of hydrophilic and hydrophobic organic contaminants in water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2019.04.014 | DOI Listing |
Viruses
December 2024
Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA.
Since the discovery of the Australia antigen, now known as the hepatitis B surface antigen (HBsAg), significant research has been conducted to elucidate its physical, chemical, structural, and functional properties. Subviral particles (SVPs) containing HBsAg are highly immunogenic, non-infectious entities that have not only revolutionized vaccine development but also provided critical insights into HBV immune evasion and viral assembly. Recent advances in cryo-electron microscopy (cryo-EM) have uncovered the heterogeneity and dynamic nature of spherical HBV SVPs, emphasizing the essential role of lipid-protein interactions in maintaining particle stability.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia.
A comprehensive review of recent research on niosomes was conducted using a mixed methodology, including searches in databases such as Scopus, PubMed, and Web of Science (WoS). Articles were selected based on relevance. The current review examines the historical development of niosomes focusing on the methods of preparations and the contemporary strategies and prospective advancements within the realm of drug delivery systems, highlighting innovative approaches across transdermal, oral, and cellular delivery.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Institute of Graduate Studies, Bioengineering Division, Tokat Gaziosmanpaşa University, 60250 Tokat, Türkiye.
Hernia repair is the most common surgical operation applied worldwide. Mesh prostheses are used to support weakened or damaged tissue to decrease the risk of hernia recurrence. However, the patches currently used in clinic applications have significant short-term and long-term risks.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea.
This study presents the fabrication of a sustainable flexible humidity sensor utilizing chitosan derived from mealworm biomass as the primary sensing material. The chitosan-based humidity sensor was fabricated by casting chitosan and polyvinyl alcohol (PVA) films with interdigitated copper electrodes, forming a laminate composite suitable for real-time, resistive-type humidity detection. Comprehensive characterization of the chitosan film was performed using Fourier-transform infrared (FTIR) spectroscopy, contact angle measurements, and tensile testing, which confirmed its chemical structure, wettability, and mechanical stability.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias (INESC-MN), Rua Alves Redol, 1000-029 Lisbon, Portugal.
Point-of-care (PoC) devices offer a promising solution for fast, portable, and easy-to-use diagnostics. These characteristics are particularly relevant in agrifood fields like viticulture where the early detection of plant stresses is crucial to crop yield. Microfluidics, with its low reagent volume requirements, is well-suited for such applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!