In this paper, we investigate the temperature-dependent relaxation dynamics in the glassy and supercooled liquid state of dipolar and ionic eutectic mixtures made of two anesthetic agents (lidocaine and prilocaine) and their hydrochloride salts, respectively. In addition to eutectic phases containing 1:1 and 4:1 mol/mol of LD/PRL and LD-HCl/PRL-HCl, respectively, the relaxation properties of non-eutectic compositions and parent compounds are also studied. We found that electrostatic long-range forces determine strongly the dielectric and mechanical response of eutectic material. As a result of Coulomb interactions between ion pairs, an additional β-relaxation mode was found in the dielectric spectra of glassy LD-HCl/PRL-HCl mixtures. On the other hand, the studies of relaxation dynamics of ionic and non-ionic mixtures at T > T revealed a continuous decrease of both fragility m and the length scale of dynamic heterogeneity N(T), with simultaneous growth of T, when the electrostatics forces appear. At the same time, we found the charge transport being decoupled from structural dynamics in all studied ionic binary mixtures that is due to the fast proton hopping. However, the efficiency of proton transport is dropping down with an increase of T.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejps.2019.04.014 | DOI Listing |
J Phys Chem A
January 2025
College of Physics Science and Technology, Yangzhou University, Yangzhou 225009, China.
Developing high-performance solar cells is a practical way to improve clean energy conversion efficiency. However, the performance of solar cells faces challenges such as fast carrier combination, poor stability, and limited solar light harvesting. Herein, we propose a strategy by decorating periodic holes in two-dimensional (2D) porous carbon-nitrogen (CN) materials with a zero-dimensional (0D) semiconducting (ZnO) cluster.
View Article and Find Full Text PDFFront Public Health
January 2025
China Institute of Regulation Research, Zhejiang University of Finance and Economics, Hangzhou, China.
Introduction: Relaxing entry regulation for private hospitals and fostering competition in the healthcare market are crucial prerequisites for addressing the diverse healthcare demands of the population and promoting the development of a Healthy China. This study aims to comprehensively evaluate the health effect of relaxing entry regulation for private hospitals and to examine its nonlinear characteristics.
Methods: Using panel data from 31 provinces in mainland China, this study employs a fixed effects panel data model to investigate the health effect of relaxing entry regulation for private hospitals.
Sci Rep
January 2025
Department of Food Engineering and Technology, Tezpur University, Tezpur, India.
This study explores the impact of natural deep eutectic solvents (NADES) on the structure and functionality of treebean (Parkia timoriana) seed protein, a novel approach to enhancing protein stability and functionality for sustainable bioprocessing. The research aims to evaluate the dynamic interactions between protein and choline chloride-sugar-based NADES, focusing on their effects on thermal properties, emulsification behaviour, and rheological characteristics. NADES were formulated using different sugars, and protein-NADES dispersions were analysed for their physicochemical and functional properties.
View Article and Find Full Text PDFBiomol NMR Assign
January 2025
Department of Chemistry, Iowa State University, Hach Hall, 2438 Pammel Drive, Ames, IA, 50011, USA.
The Alkbh7 protein, a member of the Alkylation B (AlkB) family of dioxygenases, plays a crucial role in epigenetic regulation of cellular metabolism. This paper focuses on the NMR backbone resonance assignment of Alkbh7, a fundamental step in understanding its three-dimensional structure and dynamic behavior at the atomic level. Herein, we report the backbone H, N, C chemical shift assignment of the full-length human Alkbh7.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
National University of Singapore, Department of Materials Science and Engineering, 9 Engineering Drive 1, Singapore 117575.
By virtue of being atomically thin, the electronic properties of heterostructures built from two-dimensional materials are strongly influenced by atomic relaxation. The atomic layers behave as flexible membranes rather than rigid crystals. Here we develop an analytical theory of lattice relaxation in twisted moiré materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!